Objective: To develop externally validated, reproducible, and generalizable models for distinguishing three major subtypes of renal cell carcinomas (RCCs) using machine learning-based quantitative computed tomography (CT) texture analysis (qCT-TA).
Materials And Methods: Sixty-eight RCCs were included in this retrospective study for model development and internal validation. Another 26 RCCs were included from public databases (The Cancer Genome Atlas-TCGA) for independent external validation.
Objective: To evaluate the performance of quantitative computed tomography (CT) texture analysis using different machine learning (ML) classifiers for discriminating low and high nuclear grade clear cell renal cell carcinomas (cc-RCCs).
Materials And Methods: This retrospective study included 53 patients with pathologically proven 54 cc-RCCs (31 low-grade [grade 1 or 2]; 23 high-grade [grade 3 or 4]). In one patient, two synchronous cc-RCCs were included in the analysis.