Objectives: We evaluated the accuracy of acoustic rhinometry (AR) measurements in healthy humans and assessed the ability of AR in quantifying the dimensions of the paranasal sinuses and certain anatomic structures in the nasal cavity.
Methods: Twenty nasal passages of 10 healthy adults were examined by AR and computed tomography (CT) before and after decongestion. Actual cross-sectional areas of the nasal cavity and actual locations of the nasal valve, the head of the inferior turbinate, the head of the middle turbinate, the ostia of the frontal and maxillary sinuses, and the choana were determined from CT sections perpendicular to the curved acoustic axis of the nasal passage.
Objectives: To evaluate the accuracy of acoustic rhinometry (AR) measurements, and to assess how well AR detects obstructions of various sizes at specific sites in the nasal cavity, we created a cast model from an adult cadaver nasal cavity.
Methods: The actual cross-sectional areas of the cast model nasal passage were determined by computed tomography and compared with the corresponding areas measured by AR. To assess how nasal obstruction affects the AR results, we placed small wax spheres of different diameters at specific sites in the model (nasal valve, head of the inferior turbinate, head of the middle turbinate, middle of the middle turbinate, choana, and nasopharynx).
Background: The goal of this study was to assess how anatomic variations of the nasal cavity affect the accuracy of acoustic rhinometry (AR) measurements.
Methods: A cast model of a human nasal cavity was used to investigate the effects of the nasal valve and paranasal sinuses on AR measurements. A luminal impression of a cadaver nasal cavity was made, and a cast model was created from this impression.
A comprehensive study that compared acoustic rhinometry (AR) data to computed tomography (CT) data was performed to evaluate the accuracy of AR measurements in estimating nasal passage area and to assess its ability of quantifying paranasal sinus volume and ostium size in live humans. Twenty nasal passages of 10 healthy adults were examined by using AR and CT. Actual cross-sectional areas of the nasal cavity, sinus ostia sizes, and maxillary and frontal sinus volumes were determined from CT sections perpendicular to the curved acoustic axis of the nasal passage.
View Article and Find Full Text PDFPhys Med Biol
February 2004
Stepped-tube models with a constriction in the anterior section were used to evaluate the effects that nasal valve passage area and nasal cavity shape have on acoustic rhinometry (AR) measurements. The AR-determined cross-sectional areas beyond a constriction of small passage area were consistently underestimated, and the corresponding area-distance curves showed pronounced oscillations. Also, the AR technique did not accurately reproduce abrupt changes in passage area.
View Article and Find Full Text PDFThe influence of nasal valve on acoustic rhinometry (AR) measurements was evaluated by using simple nasal cavity models. Each model consisted of a cylindrical pipe with an insert simulating the nasal valve. The AR-determined cross-sectional areas beyond the insert were consistently underestimated, and the corresponding area-distance curves showed pronounced oscillations.
View Article and Find Full Text PDFWe used pipe models to investigate the effects of paranasal sinus ostium size and paranasal sinus volume on the area-distance curves derived by acoustic rhinometry (AR). Each model had a Helmholtz resonator or a short neck as a side branch that simulated the paranasal sinus and sinus ostium. The AR-derived cross-sectional areas posterior to the ostium were significantly overestimated.
View Article and Find Full Text PDF