Publications by authors named "Mehmet A Orman"

Mutagenic processes drive evolutionary progress, with ultraviolet (UV) radiation significantly affecting evolution. Despite extensive research on SOS response-mediated mutagenesis, UV-induced repair mechanisms remain complex, and their effects on cell survival and mutagenesis are not fully understood. We previously observed a near-perfect correlation between RecA-mediated SOS response and mutation levels in following UV treatment.

View Article and Find Full Text PDF

Background: The interactions between bacterial pathogens and host cells are characterized by a multitude of complexities, leading to a wide range of heterogeneous outcomes. Despite extensive research, we still have a limited understanding of how bacterial motility in complex environments impacts their ability to tolerate antibiotics and adhere to mammalian cell surfaces. The challenge lies in unraveling the complexity of these interactions and developing quantitative microscopy approaches to predict the behavior of bacterial populations.

View Article and Find Full Text PDF

Aminoglycoside antibiotics target ribosomes and are effective against a wide range of bacteria. Here, we demonstrated that knockout strains related to energy metabolism in showed increased tolerance to aminoglycosides during the mid-exponential growth phase. Contrary to expectations, these mutations did not reduce the proton motive force or aminoglycoside uptake, as there were no significant changes in metabolic indicators or intracellular gentamicin levels between wild-type and mutant strains.

View Article and Find Full Text PDF

expresses surface appendages including fimbriae, flagella, and curli, at various levels in response to environmental conditions and external stimuli. Previous studies have revealed an interplay between expression of fimbriae and flagella in several strains, but how this regulation between fimbrial and flagellar expression affects adhesion to interfaces is incompletely understood. Here, we investigate how the concurrent expression of fimbriae and flagella by engineered strains of MG1655 affects their adhesion at liquid-solid and liquid-liquid interfaces.

View Article and Find Full Text PDF

A substantial gap persists in our comprehension of how bacterial metabolism undergoes rewiring during the transition to a persistent state. Also, it remains unclear which metabolic mechanisms become indispensable for persister cell survival. To address these questions, we directed our efforts towards persister cells in that emerge during the late stationary phase.

View Article and Find Full Text PDF

Although the mechanistic connections between SOS-induced mutagenesis and antibiotic resistance are well established, our current understanding of the impact of SOS response levels, recovery durations, and transcription/translation activities on mutagenesis remains relatively limited. In this study, when bacterial cells were exposed to mutagens like ultraviolet light for defined time intervals, a compelling connection between the rate of mutagenesis and the RecA-mediated SOS response levels became evident. Our observations also indicate that mutagenesis primarily occurs during the subsequent recovery phase following the removal of the mutagenic agent.

View Article and Find Full Text PDF

Aminoglycoside antibiotics display broad-spectrum activity against Gram-negative and Grampositive bacteria by targeting their ribosomes. Herein, we have demonstrated that energy metabolism plays a crucial role in aminoglycoside tolerance, as knockout strains associated with the tricarboxylic acid cycle (TCA) and the electron transport chain (ETC) exhibited increased tolerance to aminoglycosides in the mid-exponential growth phase of cells. Given that aminoglycoside uptake relies on the energy-driven electrochemical potential across the cytoplasmic membrane, our initial expectation was that these genetic perturbations would decrease the proton motive force (PMF), subsequently affecting the uptake of aminoglycosides.

View Article and Find Full Text PDF

A small fraction of infectious bacteria use persistence as a strategy to survive exposure to antibiotics. Periodic pulse dosing of antibiotics has long been considered a potentially effective strategy towards eradication of persisters. Recent studies have demonstrated through in vitro experiments that it is indeed feasible to achieve such effectiveness.

View Article and Find Full Text PDF

Fibrillization of the protein amyloid β is assumed to trigger Alzheimer's pathology. Approaches that target amyloid plaques, however, have garnered limited clinical success, and their failures may relate to the scarce understanding of the impact of potential drugs on the intertwined stages of fibrillization. Here, we demonstrate that bexarotene, a T-cell lymphoma medication with known antiamyloid activity both in vitro and in vivo, suppresses amyloid fibrillization by promoting an alternative fibril structure.

View Article and Find Full Text PDF

Methicillin-resistant Staphylococcus aureus (MRSA) strains are tolerant of conventional antibiotics, making them extremely dangerous. Previous studies have shown the effectiveness of proton motive force (PMF) inhibitors at killing bacterial cells; however, whether these agents can launch a new treatment strategy to eliminate antibiotic-tolerant cells mandates further investigation. Here, using known PMF inhibitors and two different MRSA isolates, we showed that the bactericidal potency of PMF inhibitors seemed to correlate with their ability to disrupt PMF and permeabilize cell membranes.

View Article and Find Full Text PDF

Bacterial persister cells are temporarily tolerant to bactericidal antibiotics but are not necessarily dormant and may exhibit physiological activities leading to cell damage. Based on the link between fluoroquinolone-mediated SOS responses and persister cell recovery, we screened chemicals that target fluoroquinolone persisters. Metabolic inhibitors (e.

View Article and Find Full Text PDF

Persister cells are a small subpopulation of phenotypic variants that survive high concentrations of bactericidal antibiotics. Their survival mechanisms are not heritable and can be formed stochastically or triggered by environmental stresses such as antibiotic treatment. In this study, high-throughput screening of an Escherichia coli promoter library and subsequent validation experiments identified several genes whose expression was upregulated by antibiotic treatment.

View Article and Find Full Text PDF

Persistence is a transient state that poses an important health concern in cancer therapy. The mechanisms associated with persister phenotypes are highly diverse and complex, and many aspects of persister cell physiology remain to be explored. We applied a melanoma cell line and panel of chemotherapeutic agents to show that melanoma persister cells are not necessarily preexisting dormant cells; in fact, they may be induced by cancer chemotherapeutics.

View Article and Find Full Text PDF

Bacterial persisters are nongrowing cells highly tolerant to bactericidal antibiotics. However, this tolerance is reversible and not mediated by heritable genetic changes. Lon, an ATP-dependent protease, has repeatedly been shown to play a critical role in fluoroquinolone persistence in Escherichia coli.

View Article and Find Full Text PDF

Cellular self-digestion is an evolutionarily conserved process occurring in prokaryotic cells that enables survival under stressful conditions by recycling essential energy molecules. Self-digestion, which is triggered by extracellular stress conditions, such as nutrient depletion and overpopulation, induces degradation of intracellular components. This self-inflicted damage renders the bacterium less fit to produce building blocks and resume growth upon exposure to fresh nutrients.

View Article and Find Full Text PDF

Acquired drug tolerance has been a major challenge in cancer therapy. Recent evidence has revealed the existence of slow-cycling persister cells that survive drug treatments and give rise to multi-drug-tolerant mutants in cancer. Cells in this dynamic persister state can escape drug treatment by undergoing various epigenetic changes, which may result in a transient metabolic rewiring.

View Article and Find Full Text PDF

Persister cells are defined as a small fraction of phenotypic variants in a cell population that are temporarily tolerant to bactericidal antibiotics. Persisters are not mutant cells; they generally survive lethal concentrations of antibiotics due to their transient nongrowing state. Persister cells have the ability to resuscitate after the end of antibiotic treatment.

View Article and Find Full Text PDF

Bacterial persisters are defined as a small subpopulation of phenotypic variants with the capability of tolerating high concentrations of antibiotics. They are an important health concern as they have been associated with recurrent chronic infections. Although stochastic and deterministic dynamics of stress-related mechanisms are known to play a significant role in persistence, mechanisms underlying the phenotypic switch to/from the persistence state are not completely understood.

View Article and Find Full Text PDF

Background: Persisters and viable but non-culturable (VBNC) cells are two phenotypic variants known to be highly tolerant to antibiotics. Although both cell types are stained as live and often appear as nongrowing during antibiotic treatment, the only distinguishing feature is the ability of persisters to recolonize in standard culture media in the absence of antibiotics. Despite considerable progress in the characterization of persister formation mechanisms, their resuscitation mechanisms remain unclear due to technical limitations in detecting and isolating these cell types in culture environments that are highly heterogeneous.

View Article and Find Full Text PDF

Bacterial persisters are rare phenotypic variants that are temporarily tolerant to high concentrations of antibiotics. We have previously discovered that stationary-phase-cell subpopulations exhibiting high redox activities were less capable of producing proteins and resuming growth upon their dilution into fresh media. The redox activities of these cells were maintained by endogenous protein and RNA degradation, resulting in self-inflicted damage that transiently repressed the cellular functions targeted by antibiotics.

View Article and Find Full Text PDF

Bacterial persisters are phenotypic variants that temporarily demonstrate an extraordinary tolerance toward antibiotics. Persisters have been linked to the recalcitrance of biofilm-related infections; hence, a complete understanding of their physiology can lead to improvement of therapeutic strategies for such infections. Mechanisms pertaining to persister formation are thought to be associated with stress response pathways triggered by intra- or extracellular stress factors.

View Article and Find Full Text PDF

Background: Persisters are rare phenotypic variants within a bacterial population that are capable of tolerating lethal antibiotic concentrations. Passage through stationary phase is associated with the formation of persisters (type I), and a major physiological response of Escherichia coli during stationary phase is cell wall restructuring. Given the concurrence of these processes, we sought to assess whether perturbation to cell wall synthesis during stationary phase impacts type I persister formation.

View Article and Find Full Text PDF

Circadian rhythms play an important role in maintaining homeostasis and solid organ function. The purpose of this study is to assess the implications of burn injury in rats on the underlying circadian patterns of gene expression in liver. Circadian-regulated genes and burn-induced genes were identified by applying consensus clustering methodology to temporally differentially expressed probe sets obtained from burn and sham-burn data sets.

View Article and Find Full Text PDF

Bacterial persisters are phenotypic variants that survive extraordinary concentrations of antibiotics, and are thought to underlie the propensity of biofilm infections to relapse. Unfortunately many aspects of persister physiology remain ill-defined, which prevents progress toward eradicating the phenotype. Recently, we identified respiration within non-growing Escherichia coli populations as a potential target for the elimination type I persisters, which are those that arise from passage through stationary phase.

View Article and Find Full Text PDF