Publications by authors named "Mehinto A"

The presence of numerous chemical contaminants from industrial, agricultural, and pharmaceutical sources in water supplies poses a potential risk to human and ecological health. Current chemical analyses suffer from limitations, including chemical coverage and high cost, and broad-coverage assays such as transcriptomics may further improve water quality monitoring by assessing a large range of possible effects. Here, we used high-throughput transcriptomics to assess the activity induced by field-derived water extracts in MCF7 breast carcinoma cells.

View Article and Find Full Text PDF

Assessing the impact of chemical contaminants on aquatic ecosystem health remains challenging due to complex exposure scenarios and the myriad of impact metrics to consider. To expand the breadth of compounds monitored and evaluate the potential hazard of environmental mixtures, cell-based bioassays (estrogen receptor alpha (ERα) and aryl hydrocarbon receptor (AhR)) and non-targeted chemical analyses with high resolution mass spectrometry (NTA-HRMS) were used to assess the quality of ∼70 marine sediment samples collected from 5 distinct coastal and offshore habitats of the Southern California Bight. AhR responses (<0.

View Article and Find Full Text PDF

Acute environmental stressors such as short-term exposure to pollutants can have lasting effects on organisms, potentially impacting future generations. Parental exposure to toxicants can result in changes to the epigenome (e.g.

View Article and Find Full Text PDF

To broaden the scope of contaminants monitored in human-impacted riverine systems, water, sediment, and treated wastewater effluent were analyzed using receptor-based cell assays that provide an integrated response to chemicals based on their mode of biological activity. Samples were collected from three California (USA) watersheds with varying degrees of urbanization and discharge from municipal wastewater treatment plants (WWTPs). To complement cell assay results, samples were also analyzed for a suite of contaminants of emerging concern (CECs) using gas and liquid chromatography-mass spectrometry (GC- and LC-MS/MS).

View Article and Find Full Text PDF

In recent decades, cyanobacteria harmful algal blooms (cyanoHABs) have increased in magnitude, frequency, and duration in freshwater ecosystems. CyanoHABs can impact water quality by the production of potent toxins known as cyanotoxins. Environmental exposure to cyanotoxins has been associated with severe illnesses in humans, domestic animals, and wildlife.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how persistent organic pollutants, specifically PCBs and PBDEs, affect the health of wild-caught hornyhead turbot fish by analyzing their liver responses to these contaminants.
  • - Using a transcriptomic approach, researchers found distinct gene expression profiles in fish exposed to different pollutants, revealing significant impacts on immune responses, endocrine functions, and lipid metabolism.
  • - The results suggest that transcriptomic tools can enhance the assessment of chemical toxicity in aquatic environments, helping to identify harmful substances in fish populations during ecological surveys.
View Article and Find Full Text PDF

Effects-based monitoring frameworks that combine the use of analytical chemistry with in vitro cell bioassays, as well as in vivo whole organism tests offer an integrative approach to broadly screen for chemical contaminants and link their presence with adverse effects on aquatic organisms. California (USA) is currently evaluating the use of such a framework to assess the impact of contaminants of emerging concern (CECs) on biota in urbanized rivers and other waterbodies. In the present study, the occurrence and effects of contaminants found in the Los Angeles River (Los Angeles County, CA, USA) were examined using analytical chemistry and in vitro and in vivo bioassays.

View Article and Find Full Text PDF
Article Synopsis
  • Toxaphene, an organochlorine pesticide, persists in the environment and has been found in soil and the tissues of wild largemouth bass around Lake Apopka in Florida, raising concerns about its toxic effects.* -
  • In a study, largemouth bass were exposed to toxaphene, revealing that it may reduce reproductive health in females by lowering vitellogenin levels while not affecting major hormones significantly, indicating antiestrogen properties.* -
  • Additionally, male bass showed suppressed testosterone production in response to toxaphene, suggesting anti-androgenic effects, with further analysis indicating changes in signaling pathways related to androgens.*
View Article and Find Full Text PDF

Many pollutants cause endocrine disruption in aquatic organisms. While studies of the direct effects of toxicants on exposed organisms are commonplace, little is known about the potential for toxicant exposures in a parental (F0) generation to affect unexposed F1 or F2 generations (multigenerational and transgenerational effects, respectively), particularly in estuarine fishes. To investigate this possibility, we exposed inland silversides () to environmentally relevant (low ng/L) concentrations of ethinylestradiol, bifenthrin, trenbolone, and levonorgestrel from 8 hpf to 21 dph.

View Article and Find Full Text PDF
Article Synopsis
  • * These pesticides have been shown to impact reproductive health and metabolism by interfering with hormone regulation, affecting pathways related to reproduction, thyroid hormones, and insulin.
  • * Research indicates that OCPs bind strongly to hormone receptors, which highlights their potential for causing significant toxicity in both wildlife and humans, emphasizing the need for increased awareness and regulation.
View Article and Find Full Text PDF

High-throughput cell assays that detect and integrate the response of multiple chemicals acting via a common mode of action have the potential to enhance current environmental monitoring practices. Establishing the linkage between in vitro and in vivo responses is key to demonstrating that in vitro cell assays can be predictive of ecologically relevant outcomes. The present study investigated the potency of 17β-estradiol (E2), estrone (E1), nonylphenol (NP), and treated wastewater effluent using the readily available GeneBLAzer estrogen receptor transactivation assay and 2 life stages of the inland silverside (Menidia beryllina).

View Article and Find Full Text PDF

The impact of unmonitored contaminants, also known as contaminants of emerging concern (CECs), on freshwater streams remains largely uncharacterized. Water samples from 31 streams representing urban, agricultural and undeveloped (i.e.

View Article and Find Full Text PDF

Cyclooxygenase (COX) inhibitors are ubiquitous in aquatic systems and have been detected in fish tissues. The exposure of fish to these pharmaceuticals is concerning because COX inhibitors disrupt the synthesis of prostaglandins (PGs), which modulate a variety of essential biological functions, including reproduction. In this study, we investigated the effects of well-characterized mammalian COX inhibitors on female fathead minnow reproductive health.

View Article and Find Full Text PDF

In vitro transactivation bioassays have shown promise as water quality monitoring tools, however their adoption and widespread application has been hindered partly due to a lack of standardized methods and availability of robust, user-friendly technology. In this study, commercially available, division-arrested cell lines were employed to quantitatively screen for endocrine activity of chemicals present in water samples of interest to environmental quality professionals. A single, standardized protocol that included comprehensive quality assurance/quality control (QA/QC) checks was developed for Estrogen and Glucocorticoid Receptor activity (ER and GR, respectively) using a cell-based Fluorescence Resonance Energy Transfer (FRET) assay.

View Article and Find Full Text PDF

High concentrations of DDT and metabolites (ΣDDT) have been detected in sediment and the demersal flatfish hornyhead turbot (Pleuronichtys verticalis) collected from Palos Verdes (PV), California, USA, a site contaminated with over 100 metric tons of DDT throughout 1960s-70s. This study was conducted to assess the transfer of ΣDDT from PV-sediment into polychaetes (Neanthes arenaceodentata) and hornyhead turbot, and to investigate if the responses in turbots from two different laboratory exposures mimic those in turbots caught in PV (PV-turbot). Turbot fed PV-sediment-contaminated polychaete for 7 days had liver concentrations of ΣDDT similar to PV-turbot.

View Article and Find Full Text PDF

The chemical-specific risk-based paradigm that informs monitoring and assessment of environmental contaminants does not apply well to the many thousands of new chemicals that are being introduced into ambient receiving waters. We propose a tiered framework that incorporates bioanalytical screening tools and diagnostic nontargeted chemical analysis to more effectively monitor for contaminants of emerging concern (CECs). The framework is based on a comprehensive battery of in vitro bioassays to first screen for a broad spectrum of CECs and nontargeted analytical methods to identify bioactive contaminants missed by the currently favored targeted analyses.

View Article and Find Full Text PDF

Transcriptomic analysis can complement traditional ecotoxicology data by providing mechanistic insight, and by identifying sub-lethal organismal responses and contaminant classes underlying observed toxicity. Before transcriptomic information can be used in monitoring and risk assessment, it is necessary to determine its reproducibility and detect key steps impacting the reliable identification of differentially expressed genes. A custom 15K-probe microarray was used to conduct transcriptomics analyses across six laboratories with estuarine amphipods exposed to cyfluthrin-spiked or control sediments (10 days).

View Article and Find Full Text PDF

In vitro bioassays have shown promise as water quality monitoring tools. In this study, four commercially available in vitro bioassays (GeneBLAzer(®) androgen receptor (AR), estrogen receptor-alpha (ER), glucocorticoid receptor (GR) and progesterone receptor (PR) assays) were adapted to screen for endocrine active chemicals in samples from two recycled water plants. The standardized protocols were used in an interlaboratory comparison exercise to evaluate the reproducibility of in vitro bioassay results.

View Article and Find Full Text PDF

Cadmium is a heavy metal that can accumulate to toxic levels in the environment leading to detrimental effects in animals and humans including kidney, liver and lung injuries. Using a transcriptomics approach, genes and cellular pathways affected by a low dose of cadmium were investigated. Adult largemouth bass were intraperitoneally injected with 20μg/kg of cadmium chloride (mean exposure level - 2.

View Article and Find Full Text PDF

The present study investigated whether a combination of targeted analytical chemistry information with unsupervised, data-rich biological methodology (i.e., transcriptomics) could be utilized to evaluate relative contributions of wastewater treatment plant (WWTP) effluents to biological effects.

View Article and Find Full Text PDF

Thousands of organic micropollutants and their transformation products occur in water. Although often present at low concentrations, individual compounds contribute to mixture effects. Cell-based bioassays that target health-relevant biological endpoints may therefore complement chemical analysis for water quality assessment.

View Article and Find Full Text PDF

Toxic compounds such as organochlorine pesticides (OCs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ether flame retardants (PBDEs) have been detected in fish, birds, and aquatic mammals that live in the Columbia River or use food resources from within the river. We developed a custom microarray for largescale suckers (Catostomus macrocheilus) and used it to investigate the molecular effects of contaminant exposure on wild fish in the Columbia River. Using Significance Analysis of Microarrays (SAM) we identified 72 probes representing 69 unique genes with expression patterns that correlated with hepatic tissue levels of OCs, PCBs, or PBDEs.

View Article and Find Full Text PDF

The new technologies for next-generation sequencing (NGS) and global gene expression analyses that are widely used in molecular medicine are increasingly applied to the field of fish biology. This has facilitated new directions to address research areas that could not be previously considered due to the lack of molecular information for ecologically relevant species. Over the past decade, the cost of NGS has decreased significantly, making it possible to use non-model fish species to investigate emerging environmental issues.

View Article and Find Full Text PDF

Human pharmaceutical drugs have been found in surface waters worldwide, and represent an increasing concern since little is known about their possible effects on wildlife. Propranolol is a common beta-adrenergic receptor antagonist (β-blocker) typically prescribed to people suffering from heart disease and hypertension. Propranolol has been detected in United States wastewater effluents at concentrations ranging from 0.

View Article and Find Full Text PDF

This study aimed to evaluate the utility of microarrays as a biomonitoring tool in field studies. A 15,000-oligonucleotide microarray was used to measure the hepatic gene expression of fathead minnows (Pimephales promelas) caged in four Nebraska, USA watersheds - the Niobrara and Dismal Rivers (low-impact agricultural sites) and the Platte and Elkhorn Rivers (high-impact agricultural sites). Gene expression profiles were site specific and fish from the low- and high-impact sites aggregated into distinct groups.

View Article and Find Full Text PDF