Bacteria often thrive in surface-attached communities, where they can form biofilms affording them multiple advantages. In this sessile form, fluid flow is a key component of their environments, renewing nutrients and transporting metabolic products and signaling molecules. It also controls colonization patterns and growth rates on surfaces, through bacteria transport, attachment and detachment.
View Article and Find Full Text PDFConvective dissolution, one of the main mechanisms for geological storage of CO_{2}, occurs when supercritical or gas CO_{2} dissolves partially into an aqueous solution, thus triggering downward convection of the denser CO_{2}-enriched liquid. Chemical reaction in the liquid can greatly enhance the process. Here, experimental measurements of convective flow inside a cylinder filled with a sodium hydroxide (NaOH) solution show that the plume's velocity can be increased tenfold as compared to a situation with no NaOH.
View Article and Find Full Text PDFWe investigate how diffusion-limited mixing of a layered solute concentration distribution within a porous medium impacts bulk electrical conductivity. To do so, we perform a milli-fluidic tracer test by injecting a fluorescent and electrically conductive tracer in a quasi two-dimensional (2D) water-saturated porous medium. High resolution optical- and geoelectrical monitoring of the tracer is achieved by using a fluorimetry technique and equipping the flow cell with a resistivity meter, respectively.
View Article and Find Full Text PDFConvective dissolution is a perennial trapping mechanism of carbon dioxide in geological formations saturated with an aqueous phase. This process, which couples dissolution of supercritical CO, convection of the liquid containing the dissolved CO, and mixing of the latter within the liquid, has so far not been studied in two-dimensional porous media. In order to do so, two-dimensional (2D) porous micromodels (patterned Hele-Shaw cells) have been fabricated from UV-curable NOA63 glue.
View Article and Find Full Text PDFSpectral induced polarization (SIP) has the potential for monitoring reactive processes in the subsurface. While strong SIP responses have been measured in response to calcite precipitation, their origin and mechanism remain debated. Here we present a novel geo-electrical millifluidic setup designed to observe microscale reactive transport processes while performing SIP measurements.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2020
Fluid flow in porous media drives the transport, mixing, and reaction of molecules, particles, and microorganisms across a wide spectrum of natural and industrial processes. Current macroscopic models that average pore-scale fluctuations into an effective dispersion coefficient have shown significant limitations in the prediction of many important chemical and biological processes. Yet, it is unclear how three-dimensional flow in porous structures govern the microscale chemical gradients controlling these processes.
View Article and Find Full Text PDFThere has recently been renewed interest in understanding the physics of foam flow in permeable media. As for Newtonian flows in fractures, the heterogeneity of local apertures in natural fractures is expected to strongly impact the spatial distribution of foam flow. Although several experimental studies have been previously performed to study foam flow in fractured media, none of them has specifically addressed that impact for parallel flow in a realistic fracture geometry and its consequences for the foam's in situ shear viscosity and bubble morphologies.
View Article and Find Full Text PDFThe transport of chemical species in porous media is ubiquitous in subsurface processes, including contaminant transport, soil drying, and soil remediation. We study vapor transport in a multiscale porosity material, a smectite clay, in which water molecules travel in mesopores and macropores between the clay grains but can also intercalate inside the nanoporous grains, making them swell. The intercalation dynamics is known to be controlled by the type of cation that is present in the nanopores; in this case exchanging the cations from Na^{+} to Li^{+} accelerates the dynamics.
View Article and Find Full Text PDFThe classical connection between symmetry breaking and the onset of chaos in dynamical systems harks back to the seminal theory of Noether [Transp. Theory Statist. Phys.
View Article and Find Full Text PDFWe flow a 2D foam through a model 2D porous medium and study experimentally and numerically how the bubble size distribution evolves along the medium. The dominant mechanism of bubble creation is a fragmentation process occurring when bubbles pinched against obstacles are split in two smaller bubbles. We infer the statistics of these individual and local fragmentation events from the experimental data and propose a fragmentation equation to relate that statistics to the evolution of the global size distribution.
View Article and Find Full Text PDFWe study the macroscopic representation of noise-driven interfaces in stochastic interface growth models in (1+1) dimensions. The interface is characterized macroscopically by saturation, which represents the fluctuating sharp interface by a smoothly varying phase field with values between 0 and 1. We determine the one-point interface height statistics for the Edwards-Wilkinson (EW) and Kadar-Paris-Zhang (KPZ) models in order to determine explicit deterministic equations for the phase saturation for each of them.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2014
We study foam flow in an elementary model porous medium consisting of a convergent and a divergent channel positioned side by side and possessing a fixed joint porosity. Configurations of converging or diverging channels are ubiquitous at the pore scale in porous media, as all channels linking pores possess a converging and diverging part. The resulting flow kinematics imposes asymmetric bubble deformations in the two channels, which modulate foam-wall friction and strongly impact the flux distribution.
View Article and Find Full Text PDFWe propose a new experimental set up to characterize mixing and reactive transport in porous media with a high spatial resolution at the pore scale. The analogous porous medium consists of a Hele-Shaw cell containing a single layer of cylindrical solid grains built by soft lithography. On the one hand, the measurement of the local, intrapore, conservative concentration field is done using a fluorescent tracer.
View Article and Find Full Text PDFThe electric field induced structuring in clay-oil suspensions has been studied by means of wide angle x-ray scattering (WAXS), rheometry, scanning electron microscopy (SEM), as well as leak current density and dielectric constant measurements. The clay particles' orientation distribution was inferred from the azimuthal changes of the clay diffraction peak intensity. The angular width of that distribution was quantified through an orientational order parameter.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2010
The swelling of layered smectite clay particles consists of a change in the interlayer repetition distance ( d -spacing) as a function of temperature and humidity. For the synthetic clay sodium fluorohectorite, hydrodynamically stable hydration states with zero, one and two intercalated monolayers of water have previously been reported, with discrete jumps in d -spacing at the transitions between the hydration states. Keeping the temperature fixed and varying the ambient relative humidity, we find small reproducible d -spacing changes also within the hydration states.
View Article and Find Full Text PDFWe investigate the dispersion of a finite amount of solute after it has been injected into the laminar flow occurring in a horizontal smooth fracture of constant aperture. When solute buoyancy is negligible, the dispersion process eventually leads to the well-known asymptotic Taylor-Aris dispersion regime, in which the solute progresses along the fracture at the average fluid velocity, according to a one-dimensional longitudinal advection-dispersion process. This paper addresses more realistic configurations for which the solute-induced density contrasts within the fluid play an important role on solute transport, in particular at small and moderate times.
View Article and Find Full Text PDFWe study the rheology of quick clay, an unstable soil responsible for many landslides. We show that above a critical stress the material starts flowing abruptly with a very large viscosity decrease caused by the flow. This leads to avalanche behavior that accounts for the instability of quick clay soils.
View Article and Find Full Text PDFColloidal suspensions of Na-fluorohectorite synthetic clay platelets in saline water exhibit coexisting isotropic and nematic phases, due to gravitational separation of the polydisperse particles. We study the ordering of the platelets at the interfaces between various coexisting phases. Four different experimental techniques are employed: visual observation of birefringence, synchrotron wide angle and small-angle X-ray scattering, and magnetic resonance imaging.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2009
Systems of platelet-shaped nanostacks of the synthetic clay Na-fluorohectorite, suspended in saline solutions of various salt concentrations, exhibit a rich phase behavior with up to four phases coexisting in a single sample tube. They are studied here using small-angle x-ray scattering: the anisotropy of the obtained images is quantified, and, together with x-ray absorption measurements, this provides a precise determination of the phase boundaries, as well as a measure of the orientational ordering of the clay colloids in the various gel phases. The coexistence of different phases results from a sedimentation-induced vertical gradient in particle fraction.
View Article and Find Full Text PDFWe have studied the effect of an external direct current (DC) electric field ( approximately 1 kV/mm) on the rheological properties of colloidal suspensions consisting of aggregates of laponite particles in a silicone oil. Microscopy observations show that, under application of an electric field greater than a triggering electric field Ec approximately 0.6 kV/mm, laponite aggregates assemble into chain- and/or columnlike structures in the oil.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2004
We present in this paper an experimental study of the invasion activity during unstable drainage in a two-dimensional random porous medium, when the (wetting) displaced fluid has a high viscosity with respect to that of the (nonwetting) displacing fluid, and for a range of almost two decades in capillary numbers corresponding to the transition between capillary and viscous fingering. We show that the invasion process takes place in an active zone within a characteristic screening length lambda from the tip of the most advanced finger. The invasion probability density is found to only depend on the distance z to the latter tip and to be independent of the value for the capillary number Ca.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
November 2002
We have investigated experimentally the competition between viscous, capillary, and gravity forces during drainage in a two-dimensional synthetic porous medium. The displacement of a mixture of glycerol and water by air at constant withdrawal rate has been studied. The setup can be tilted to tune gravity, and pressure is recorded at the outlet of the model.
View Article and Find Full Text PDF