A biphenyl based coumarin fluorescent molecule, N,N'-bis(7-diethylamino-2-oxo-2 H-chromen-3-yl)methylene)biphenyl-2-2'-dicarbohydrazide (molecule 1) has been synthesized and characterised. Photophysical studies of 1 exhibit solvent polarity dependent absorption and emission maxima. Citrate capped gold nanoparticles (AuNPs) have been mixed with molecule 1 for the preparation of AuNPs/1 conjugate.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2020
A coumarin based fluorescent molecule, 3-amino-2-cynano-3-(7-diethylamino-2-oxo-2H-chromen-3-yl)-acrylic acid ethyl ester (1) has been synthesized and characterised. Photophysical studies of 1 exhibit polarity dependent shift of its emission maxima which have been explained on the basis the existence of polar excited state of the molecule. Combination of compound 1 and citrate capped AuNPs (AuNPs/1 conjugate) has been used as a sensing tool for heavy metals.
View Article and Find Full Text PDFTo get an idea about the most probable microporous supramolecular environment in the gel state, gelator molecule has been crystallized from its gelling solvent (dimethylformamide). Crystal structure analysis of shows a strong π···π stacking interaction between the electron-deficient pentafluorophenyl ring and electron-rich naphthyl ring. The gelling solvent situated in the "molecular pocket" stitches the gelators through weak H-bonding interactions to facilitate the formation of an organogel.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2018
Two amido-schiff bases (3-Hydroxy-naphthalene-2-carboxylic acid pyren-1-ylmethylene-hydrazide and Naphthalene-2-carboxylic acid pyren-1-ylmethylene-hydrazide) have been synthesized having a common structural unit and only differs by a -OH group in the naphthalene ring. Both of them can detect Cu ion selectively in semi-aqueous medium in distinctly different output modes (one detects Cu by naked-eye color change where as the other detects Cu by fluorescence enhancement). The difference in the binding of Cu with the compounds is the reason for this observation.
View Article and Find Full Text PDF