Publications by authors named "Mehdi Pawlak-Chaouch"

Aims: Type 1 diabetes is associated with a substantially increased risk of impaired lung function, which may impair aerobic fitness. We therefore aimed to examine the ventilatory response during maximal exercise and the pulmonary diffusion capacity function at rest in individuals with uncomplicated type 1 diabetes.

Methods: In all, 17 adults with type 1 diabetes free from micro-macrovascular complications (glycated haemoglobin: 8.

View Article and Find Full Text PDF

In skeletal muscle, chronic oxygen depletion induces a disturbance leading to muscle atrophy. Mechanical stress (physical exercise) and nutritional supplement therapy are commonly used against loss of muscle mass and undernutrition in hypoxia, while oxygenation therapy is preferentially used to counteract muscle fatigue and exercise intolerance. However, the impact of oxygenation on skeletal muscle cells remains poorly understood, in particular on signalling pathways regulating protein balance.

View Article and Find Full Text PDF

Aims/hypothesis: Early compromised endothelial function challenges the ability of individuals with type 1 diabetes to perform normal physical exercise. The exact mechanisms underlying this vascular limitation remain unknown, but may involve either formation or metabolism of nitric oxide (NO), a major vasodilator, whose activity is known to be compromised by oxidative stress.

Methods: Muscle microvascular reactivity (near-infrared spectroscopy) to an incremental exhaustive bout of exercise was assessed in 22 adults with uncomplicated type 1 diabetes (HbA 64.

View Article and Find Full Text PDF

A large yet heterogeneous body of literature exists suggesting that endothelial dysfunction appears early in type 1 diabetes, due to hyperglycemia-induced oxidative stress. The latter may also affect vascular smooth muscles (VSM) function, a layer albeit less frequently considered in that pathology. This meta-analysis aims at evaluating the extent, and the contributing risk factors, of early endothelial dysfunction, and of the possible concomitant VSM dysfunction, in type 1 diabetes.

View Article and Find Full Text PDF

Nitrate (NO)-rich beetroot juice (BR) is recognized as an ergogenic supplement that improves exercise tolerance during submaximal to maximal intensity exercise in recreational and competitive athletes. A recent study has investigated the effectiveness of BR on exercise performance during supramaximal intensity intermittent exercise (SIE) in Olympic-level track cyclists, but studies conducted in elite endurance athletes are scarce. The present study aimed to determine whether BR supplementation enhances the tolerance to SIE in elite endurance athletes.

View Article and Find Full Text PDF

New Findings: What is the central question of this study? Is there an association of plasma concentration of asymmetric dimethylarginine, which is related to exercise capacity in patients with cardiovascular diseases, with oxygen delivery and subsequently exercise capacity in healthy subjects in the absence of the potentially confounding influence of inflammation and oxidative stress? What is the main finding and its importance? Plasma asymmetric dimethylarginine concentrations are not related to exercise capacity in healthy subjects, while O delivery in the working skeletal muscle during the maximal graded-exercise test is not associated with any of the l-arginine analogues. ADMA alone does not play a crucial role in local muscle perfusion and in maintaining exercise capacity.

Abstract: Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide (NO) synthesis that could limit oxygen (O ) delivery in the working skeletal muscles by altering endothelium-dependent vasodilatation.

View Article and Find Full Text PDF

Background: Recent randomized controlled trials have suggested that dietary nitrate (NO3(-)), found in beetroot and other vegetables, and inorganic NO3(-) salts decrease metabolic rate under resting and exercise conditions.

Objective: Our aim was therefore to determine from a systematic review and meta-analysis whether dietary NO3(-) supplementation significantly reduces metabolic rate, expressed as oxygen uptake (VO2), under resting and exercise conditions in healthy humans and those with cardiorespiratory diseases.

Design: A systematic article search was performed on electronic databases (PubMed, Scopus and Web of Science) from February to March 2015.

View Article and Find Full Text PDF

Dietary nitrate (NO3(-)) supplementation has been shown to increase exercise tolerance and improve oxidative efficiency during aerobic exercise in healthy subjects. We tested the hypothesis that a 3-day supplementation in beetroot juice (BJ) rich in NO3(-) would improve the tolerance to supramaximal intensity intermittent exercise consisting of 15-s exercise periods at 170% of the maximal aerobic power interspersed with 30-s passive recovery periods. The number of repetitions completed before reaching volitional exhaustion was significantly higher in the BJ than in the placebo condition (26.

View Article and Find Full Text PDF