A new series of supported organocatalysts, prepared by a simple method, were used for selective sugar oxidation. This approach is based on the immobilization of a nitroxide derivative through a carboxylic function on nanometric metal oxides (TiO, AlO and CeO), allowing the recovery of the catalyst. These hybrid materials were carefully characterized by Diffuse Reflectance FT-IR spectroscopy (DRIFT), ThermoGravimetric Analysis (TGA), X-Ray Diffraction (XRD), Brunauer-Emmet-Teller surface area measurements (B.
View Article and Find Full Text PDFMicroencapsulation using the transacylation reaction in a W/O emulsion is based on the creation of amide bonds between the protein's amine functions and the ester groups of a polysaccharide in the aqueous phase after alkalization. Commercial propylene glycol alginate (PGA) has been the only modified polysaccharide involved in the process up to now. In the present work, we describe the effect of substituting the commercial PGA by other chemically modified alginates in the formation of microparticles.
View Article and Find Full Text PDFLarge quantities (>3 g) of a new series of alkyl uronates were synthesized in two steps from commercial methyl hexopyranosides. Firstly, several tens of grams of free methyl α-d-glucopyranoside were selectively and quantitatively oxidized into corresponding sodium uronate using 2,2,6,6-tetramethyl-1-piperidinyloxy free radical (TEMPO)-catalyzed oxidation. Hydrophobic chains of different length were then introduced by acid-mediated esterification with fatty alcohols (ethyl to lauryl alcohol) leading to the desired alkyl glucuronates with moderate to good yields (49%-72%).
View Article and Find Full Text PDF