Porous combustion has drawn vast attention over the last few decades leading to a variety of progressing applications particularly in industrial kitchens and household appliances that require time sensitive heating. The present study experimentally investigates the relationship between cooking duration and the thermal efficiency of a cooking pot heated on a porous burner providing a valuable insights into the effectiveness of the heating process in terms of both time and fuel consumption. To facilitate this investigation, a dedicated test bench is designed and constructed, equipped with thermometers and timer to effectively monitor the temporal/thermal behavior of the heating process.
View Article and Find Full Text PDFIn non-uniform environments, different body parts may experience different ranges of physical/environmental parameters. Therefore, to assess the overall thermal sensation in non-uniform environments, the local temperature/thermal sensation of various body parts should be calculated. The local temperature/thermal sensation based on cutaneous thermoreceptor (TRs) responses has been evaluated using MSTB (Multi-Segmental Thermoregulatory Bioheat) model and LTRESP (Local Thermal Response) index in our recent studies.
View Article and Find Full Text PDFCompliance mismatch between the graft and the host artery of an end-to-side (ETS) arterial bypass graft anastomosis increases the intramural stress in the ETS graft-artery junction, and thus may compromise its long-term patency. The present study takes into account the effects of collagen fibers to demonstrate how their orientations alter the stresses. The stresses in an ETS bypass graft anastomosis, as a man-made bifurcation, are compared to those of its natural counterpart with different fiber orientations.
View Article and Find Full Text PDFPhysiologically, the thermal sensation/perception of human body is related to the response of cutaneous thermoreceptors (TRs) to the environment. However, the thermal response of skin warm and cold TRs is a function of two important factors: TRs temperatures and their time derivative at the subcutaneous locations of TRs. The available thermal models based on TRs response consider the same sensitivity for all thermal receptors of body.
View Article and Find Full Text PDFUnder non-uniform environments, the human body thermal perception depends on the thermal responses of cutaneous thermoreceptors (TRs) in different body parts. However, skin TRs thermal response includes static and dynamic parts depending on TRs temperature and its change rate, respectively. Thus, it is necessary to evaluate the time-dependent temperatures of cutaneous TRs in different body parts.
View Article and Find Full Text PDFIndividual differences, such as weight, height, gender, age, and Basal Metabolic Rate (BMR), between human subjects can significantly affect body thermoregulatory mechanisms. Therefore, application of common population-based thermal comfort models cannot provide accurate results for an individual's thermal sensation. Based on the standard thermal models, including those of Fanger and Gagge, individual parameters are not considered in the evaluation of thermal sensations.
View Article and Find Full Text PDFProc Inst Mech Eng H
February 2015
In case of human bone fracture, the best way to better and faster knitting is when a traumatologist fixes the fractured bone ends by drilling and setting the immobilization plates by screws. Heat generation during bone drilling may result in thermal injury due to exposure to elevated temperatures, with potentially devastating effect on the outcome of orthopedic surgery. A recent and promising method for reducing temperature in bone drilling is the use of ultrasonic assistance, where high-frequency and low-amplitude vibrations are added in feed direction during cutting process.
View Article and Find Full Text PDFBone loss due to thermo necrosis may weaken the purchase of surgically placed screws and pins, causing them to loosen postoperatively. The heat generated during the bone drilling is proportional to cutting speed and force and may be partially dissipated by the blood and tissue fluids, and somehow carried away by the chips formed. Increasing cutting speed will reduce cutting force and machining time.
View Article and Find Full Text PDFIn the present study, the estimation of elastic modulus of large arteries is used as an index for arterial stiffness. At first, a dynamic model is introduced for pulsatile blood flow in arteries with elastic walls. The model is based on Navier-Stokes equations in fluid mechanics and the theory of elasticity.
View Article and Find Full Text PDF