Enantioconvergent transformations from racemic mixtures are attractive since they allow the generation of optically active products with full conversion despite the possibly adverse kinetic resolution process. When dealing with gold(I)-catalyzed cycloisomerizations, chirality transfer from the precursor is another possible diverting pathway, which renders enantioconvergence challenging. Not surprisingly, enantioconvergent Au(I)-catalyzed processes have remained extremely rare.
View Article and Find Full Text PDFIn this work, we developed a ligand- and base-free visible-light-mediated protocol for the photoredox syntheses of arylphosphonates and, for the first time, alkyl phosphonates. Zinc phthalocyanine-photocatalyzed Csp2-P and Csp3-P bond formations were efficiently achieved by reacting aryl/alkylhydrazines with trialkylphosphites in the presence of air serving as an abundant oxidant. The reaction conditions tolerated a wide variety of functional groups.
View Article and Find Full Text PDFThe combination of black TiO nanoparticles (NPs) with a nickel catalyst provides a low-cost, sustainable, and reusable alternative dual catalytic system to a homogeneous counterpart (noble metals). This black TiO-photoredox/nickel dual catalytic system has efficiently driven C-P bond formation between aryl iodides and diarylphosphine oxides under visible light, providing good to excellent yields as well as tolerating a variety of functional groups. The practical application of this semi-heterogeneous protocol has been highlighted by a sunlight experiment, a gram-scale reaction, and a reusability test.
View Article and Find Full Text PDF