Introduction: CD39 plays an important role in the immunoregulation and inhibition of effector cells. It is expressed on immune cells, including Tregs, and on extracellular vesicles (EVs) budding from the plasma membrane. Platelet transfusion may induce alloimmunization against HLA-I antigens, leading to refractoriness to platelet transfusion with severe consequences for patients.
View Article and Find Full Text PDFIntroduction: Acute myeloid leukemia (AML) is one of the commonest hematologic disorders. Due to the high frequency of disease- or treatment-related thrombocytopenia, AML requires treatment with multiple platelet transfusions, which can trigger a humoral response directed against platelets. Some, but not all, AML patients develop an anti-HLA immune response after multiple transfusions.
View Article and Find Full Text PDFIntroduction: Aplasia and hematological malignancies are treated with platelet transfusions, which can have major immunomodulatory effects. Platelet concentrates (PCs) contain many immunomodulatory elements, including the platelets themselves, residual leukocytes, extracellular vesicles, such as microparticles (MPs), cytokines and other soluble elements. Two of these components, MPs and a soluble form of CD27 (sCD27), have been shown to play a particularly important role in immune system modulation.
View Article and Find Full Text PDFBackground: Patients with hematologic malignancies require prophylactic or curative platelet transfusions to prevent or treat bleeding. Treatments such as chemotherapy, radiotherapy, and hematopoietic stem cell transplantation cause persistent thrombocytopenia, necessitating platelet transfusions. However, class I HLA antibodies can cause a serious complication: immune-mediated platelet refractoriness.
View Article and Find Full Text PDF