Inhibition of vascular endothelial growth factor is the mode of action for several approved therapies, including aflibercept, for the treatment of neovascular age-related macular degeneration (nAMD) and diabetic macular edema (DME). Lack of compliance due to the frequent intravitreal dosing requirements may result in inadequately treated disease, leading to irreversible vision impairment. To date, the majority of gene therapy clinical trials providing sustained anti-VEGF levels in the retina have been limited to subretinal injections requiring a vitrectomy.
View Article and Find Full Text PDFPurpose: To evaluate the long-term safety of vascular endothelial growth factor (VEGF) suppression with sustained aflibercept expression after a single intravitreal injection (IVI) of ADVM-022, an anti-VEGF gene therapy, in non-human primates (NHPs).
Methods: Non-human primates received bilateral IVI of ADVM-022, a gene therapy vector encoding aflibercept, a standard of care for the treatment of VEGF-based retinal disease. Aflibercept levels from ocular fluids and tissues were measured.
Several standard-of-care therapies for the treatment of retinal disease, including aflibercept, inhibit vascular endothelial growth factor (VEGFA). The main shortcoming of these therapies is potential undertreatment due to a lack of compliance resulting from the need for repeated injections. Gene therapy may provide sustained levels of anti-VEGFA proteins in the retina following a single injection.
View Article and Find Full Text PDFInhibition of vascular endothelial growth factor, a key contributor to the choroidal neovascularization associated with wet age-related macular degeneration, is the mode of action of several approved therapies, including aflibercept, which requires frequent intravitreal injections to provide clinical benefit. Lack of compliance with the dosing schedule may result in recurrence of active wet macular degeneration, leading to irreversible vision impairment. Gene therapy providing sustained anti-vascular endothelial growth factor levels in the retina following a single injection could drastically reduce the treatment burden and improve visual outcomes.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a severe muscle-wasting disorder caused by mutations in the dystrophin gene, without curative treatment yet available. Our study provides, for the first time, the overall safety profile and therapeutic dose of a recombinant adeno-associated virus vector, serotype 8 (rAAV8) carrying a modified U7snRNA sequence promoting exon skipping to restore a functional in-frame dystrophin transcript, and injected by locoregional transvenous perfusion of the forelimb. Eighteen Golden Retriever Muscular Dystrophy (GRMD) dogs were exposed to increasing doses of GMP-manufactured vector.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
September 2009
Promoting neural regeneration after cerebral infarction has emerged as a potential approach for the treatment of stroke. Insulin-like growth factor 1 (IGF-1) possesses both neurotrophic and angiogenic properties. The aim of this study was to determine whether postischemic gene transfer of IGF-1 enhances neurovascular regeneration in a mouse model of permanent focal cerebral ischemia.
View Article and Find Full Text PDFObjective: Parkinson's disease is characterized by profound motor deficits that result mainly as a consequence of degeneration of midbrain dopaminergic neurons. No current therapy slows or halts disease progression. Neurturin (NTN) and glial cell line-derived neurotrophic factor have potent neuroprotective and neurorestorative effects on dopaminergic neurons, but their use in treating Parkinson's disease has been limited by significant delivery obstacles.
View Article and Find Full Text PDFIn several disease states, abnormal growth of blood vessels is associated with local neuronal degeneration. This is particularly true in ocular diseases such as retinal angiomatous proliferation (RAP) and macular telangiectasia (MacTel), in which, despite the absence of large-scale leakage or hemorrhage, abnormal neovascularization (NV) is associated with local neuronal dysfunction. We describe here a retinal phenotype in mice with dysfunctional receptors for VLDL (Vldlr-/- mice) that closely resembles human retinal diseases in which abnormal intra- and subretinal NV is associated with photoreceptor cell death.
View Article and Find Full Text PDFMembers of the GDNF family of ligands, including neurturin (NTN), have been implicated as potential therapeutic agents for Huntington's disease (HD). The present study examined the ability of CERE-120 (AAV2-NTN) to provide structural and functional protection in the N171-82Q transgenic HD mouse model. AAV2-NTN therapy attenuated rotorod deficits in this mutant relative to control treated transgenics (p<0.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a devastating disease that is characterized by the progressive loss of motor neurons. Patients with ALS usually die from respiratory failure due to respiratory muscle paralysis. Consequently, therapies aimed at preserving segmental function of the respiratory motor neurons could extend life for these patients.
View Article and Find Full Text PDFPurpose: To develop CERE-120 (AAV-NTN) as a novel therapy for Parkinson's disease (PD) that might restore function of degenerating dopamine neurons and prevent further degeneration.
Scope: A nonclinical program demonstrated that NTN expression can be predictably controlled following CERE-120 administration, provides clear evidence of efficacy in numerous animal models and is safe at dose multiples that far exceed those required for efficacy. Preliminary, open label evidence in PD subjects offers corroborative support for these observations.
Spontaneous atrophy of basal forebrain cholinergic neurons occurs with aging in the non-human primate brain. Short-term reversal of this atrophy has been reported following ex vivo nerve growth factor (NGF) gene delivery, but long-term effects of in vivo NGF gene delivery in the aged primate brain have not to date been examined. We tested the hypothesis that long-term lentiviral NGF intraparenchymal gene delivery would reverse age-related cholinergic decline, without induction of adverse effects previously observed following sustained intracerebroventricular growth factor protein exposure.
View Article and Find Full Text PDFNeurturin (NTN) is a neurotrophic factor for dopaminergic neurons that may be therapeutic for patients with Parkinson's disease (PD). As a crucial component in a series of nonclinical translational studies aimed at testing whether CERE-120 should advance into clinical trials in PD subjects, we characterized the expression, bioactivity and safety of CERE-120, an adeno-associated virus type-2 (AAV2) vector encoding NTN, following delivery to the striatum of nonhuman primates. Monkeys received bilateral injections of CERE-120 across a tenfold range of doses (6 x 10(10) to 6 x 10(11) vector genomes per animal) or formulation buffer (FB) control.
View Article and Find Full Text PDFBackground And Purpose: Insulin-like growth factor I (IGF-1) is a pleiotropic growth factor that has been demonstrated to protect against acute ischemic brain injury. Whether IGF-1 improves long-term functional outcome after ischemic stroke is not known. The aim of this study is to examine whether IGF-1 overexpression through adeno-associated virus (AAV) -mediated gene transfer enhances neurovascular remodeling and improves functional outcome in a mouse model of focal cerebral ischemia.
View Article and Find Full Text PDFThe potent neuroprotective activities of neurotrophic factors, including insulin-like growth factor 1 (IGF-1), make them promising candidates for treatment of amyotrophic lateral sclerosis (ALS). In an effort to maximize rate of motor neuron transduction, achieve high levels of spinal IGF-1 and thus enhance therapeutic benefit, we injected an adeno-associated virus 2 (AAV2)-based vector encoding human IGF-1 (CERE-130) into lumbar spinal cord parenchyma of SOD1(G93A) mice. We observed robust and long-term intraspinal IGF-1 expression and partial rescue of lumbar spinal cord motor neurons, as well as sex-specific delayed disease onset, weight loss, decline in hindlimb grip strength and increased animal survival.
View Article and Find Full Text PDFNeurturin (NTN) is a neurotrophic factor with known potential to protect and restore the function of dopaminergic substantia nigra neurons whose degeneration has been most closely linked to the major motor deficits in Parkinson's disease (PD). CERE-120, an adeno-associated virus serotype 2 (AAV2)-based gene delivery vector encoding human NTN, is being developed as a potential therapeutic for PD. In a series of preclinical studies reported herein, CERE-120 delivery to the striatum produced a dose-related neuroprotection of nigrostriatal neurons in the rat 6-hydroxydopamine (6-OHDA) lesion model.
View Article and Find Full Text PDFNeurturin (NTN) is a potent survival factor for midbrain dopaminergic neurons. CERE-120, an adeno-associated virus type 2 (AAV2) vector encoding human NTN (AAV2-NTN), is currently being developed as a potential therapy for Parkinson's disease. This study examined the bioactivity and safety/tolerability of AAV2-NTN in the aged monkey model of nigrostriatal dopamine insufficiency.
View Article and Find Full Text PDFHuntington's disease (HD) is a devastating neurodegenerative disease characterized by the selective loss of neurons in the striatum and cerebral cortex. This study tested the hypothesis that an adenoassociated viral (AAV2) vector encoding for the trophic factor neurturin (NTN) could provide neuroprotection in the rat 3-nitropropionic acid (3NP) model of HD. Rats received AAV2-NTN (CERE-120), AAV2-eGFP or Vehicle, followed 4 weeks later by the mitochondrial toxin 3NP.
View Article and Find Full Text PDFObjective: We tested the hypothesis that gene delivery of the trophic factor neurturin could preserve motor function and protect nigrostriatal circuitry in hemiparkinsonian monkeys.
Methods: An adeno-associated virus-based vector encoding human neurturin (AAV2-NTN; also called CERE-120) was injected into the striatum and substantia nigra of monkeys 4 days after a unilateral intracarotid injection of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) rendered them hemiparkinsonian. Control hemiparkinsonian monkeys received either AAV2 encoding green fluorescent protein or formulation buffer.
Glial cell line-derived neurotrophic factor (GDNF) or its naturally occurring analog, neurturin (NTN), can potentially improve the function and delay the rate of degeneration of dopaminergic neurons in Parkinson's disease (PD). However, their delivery to the central nervous system has proven to be a significant challenge. Viral vector-mediated gene transfer offers a practical means to continuously supply neurotrophic factors in targeted areas of the brain.
View Article and Find Full Text PDFHuntington's disease (HD) is a fatal, genetic, neurological disorder resulting from a trinucleotide repeat expansion in the gene that encodes for the protein huntingtin. These excessive repeats confer a toxic gain of function on huntingtin, which leads to the degeneration of striatal and cortical neurons and a devastating motor, cognitive, and psychological disorder. Trophic factor administration has emerged as a compelling potential therapy for a variety of neurodegenerative disorders, including HD.
View Article and Find Full Text PDFNerve growth factor (NGF) has been shown to promote survival and function of cholinergic neurons in the basal forebrain in various models of neuronal degeneration in rodents and primates. We examined whether a regulatable in vivo expression system can control the survival of cholinergic neurons after injury, using a tetracycline-regulated promoter ("tet-off" system) to modulate lentiviral NGF gene delivery. Two weeks after lesions to cholinergic neurons, significant cell rescue (65+/-8% neuron survival; P<0.
View Article and Find Full Text PDF