The global incidence of melanoma, the most lethal form of skin cancer, continues to escalate, emphasizing the urgent need for more effective therapeutic strategies. This review assesses the latest advancements in topical and transdermal drug delivery systems, positioning them as promising alternatives. These systems allow for the direct application of therapeutic agents to tumor sites, enhancing drug effectiveness, improving patient compliance, and reducing systemic toxicity.
View Article and Find Full Text PDFPaclitaxel (PTX), an antimitotic drug from the taxanes group, prevents the proliferation of breast cancer cells through mitosis arrest and activation by a cascade of signaling pathways that lead to apoptosis. Mitochondria is one of the important signaling routes for inducing apoptosis. For mitochondria targeting, triphenylphosphonium (TPP) with a delocalized charge and hydrophobic nature was utilized as a moiety to facilitate penetration through a phospholipid membrane of mitochondria.
View Article and Find Full Text PDFDespite advances in bone tissue engineering, fabricating a scaffold which can be used as an implant for large bone defects remains challenge. One of the great importance in fabricating a biomimetic bone implant is considering the possibility of the integration of the structure and function of implants with hierarchical structure of bone. Herein, we propose a method to mimic the structural unit of compact bone, osteon, with spatial pattern of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs) in the adjacent layers that mimic Haversian canal and lamella, respectively.
View Article and Find Full Text PDFBackground: Recently biodegradable nanoparticles are the center of attention for the development of drug delivery systems. Molecularly imprinted polymer (MIP) is an interesting candidate for designing drug nano-carriers. MIP-based nanoparticles could be used for cancer treatment and exhibited the potential to fill gaps regarding to ligand-based nanomaterials.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
August 2022
Although stem cell therapy is a major area of interest in tissue engineering, providing proper oxygen tension, good viability, and cell differentiation remain challenges in tissue-engineered scaffolds. In this study, an osteogenic scaffold was fabricated using the 3D bio-printing technique. The bio-ink contained alginate hydrogel, encapsulated human bone marrow-derived mesenchymal stem cells (hBM-MSCs), calcium peroxide nanoparticles (CPO NPs) as an oxygen generating biomaterial, and bone morphogenic protein-2 nanoparticles (BMP2 NPs) as an osteoinductive growth factor.
View Article and Find Full Text PDFMitochondria have been recognized as important targets in cancer therapy due to their role in the respiratory process of cells. One approach employed for mitochondrion targeting is conjugation of a delocalized cation such as triphenylphosphonium (TPP), with antineoplastic agents, for instance paclitaxel (PTX). In cell cytoplasm, TPP-PTX can come close to mitochondria due to its high positive charge, which has a strong tendency toward the enhanced negative charge of mitochondria.
View Article and Find Full Text PDFBackground: Imatinib is a platelet-derived growth factor receptor (PDGFR) inhibitor with very low water solubility. Previous studies in atherosclerosis have shown that PDGFR activity has an egregious effect on vascular disease and progression of atherosclerosis. Specific ligands of atherosclerotic plaques can be used for targeting of nanoparticles.
View Article and Find Full Text PDFEnhanced understanding of bio-nano interaction requires recognition of hidden factors such as protein corona, a layer of adsorbed protein around nano-systems. This study compares the biological identity and fingerprint profile of adsorbed proteins on PLGA-based nanoparticles through nano-liquid chromatography-tandem mass spectrometry. The total proteins identified in the corona of nanoparticles (NPs) with different in size, charge and compositions were classified based on molecular mass, isoelectric point and protein function.
View Article and Find Full Text PDFMetastatic cancer is responsible for 90% of deaths in world. Usage of nano-carriers improve the delivery and efficacy of chemotherapeutic agents. Recent studies suggest that decoration of the surface of nano-carriers with various targeting agents may further improve their overall therapeutic efficacy.
View Article and Find Full Text PDFTilmicosin (TLM) is an important antibiotic in veterinary medicine with low bioavailability and safety. This study aimed to formulate and evaluate physicochemical properties, storage stability after lyophilization, and antibacterial activity of three TLM-loaded lipid nanoparticles (TLM-LNPs) including solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), and lipid-core nanocapsules (LNCs). Physicochemical parameters such as particle size-mean diameter, polydispersity index, zeta potential, drug encapsulation efficiency (EE), loading capacity, and morphology of the formulations were evaluated and the effects of various cryoprotectants during lyophilization and storage for 8 weeks were also studied.
View Article and Find Full Text PDFMicrospheres formulated from poly (D, L-lactic-co-glycolide) (PLGA), a biodegradable polymer, have been extensively evaluated as a drug delivery system. In this study, the preparation, characterization and drug release properties of the PLGA microspheres were evaluated. Simvastatin (SIM)-loaded PLGA microspheres were prepared by oil-in-water emulsion/solvent evaporation method.
View Article and Find Full Text PDFChitosan-coated human serum albumin nanoparticles were functionalized by MUC1 aptamer to obtain a selective drug carrier toward cancers overexpressing MUC1. The negative charges of albumin nanoparticles were shifted to positive charges by surface modification with chitosan, and MUC1 was conjugated through an acrylate spacer. The cytotoxicity of targeted nanoparticles was significantly more than non-aptamer nanoparticles, and also the chitosan-coated nanoparticles had more cytotoxic effects than the negatively charged albumin nanoparticles.
View Article and Find Full Text PDFBackground: Cabazitaxel (CBZ) is a new taxane approved by FDA for treatment of castration- resistant prostate cancer not responding to docetaxel. However, CBZ is not a suitable substrate for p-glycoprotein 60, an efflux pump which transports anticancer drugs out of malignant cells and is therefore a promising drug for treatment of multidrug resistant tumors. Similar to other taxanes, the presence of Tween 80 in the CBZ formulation shows that it is insoluble in water.
View Article and Find Full Text PDFBackground: A folate-receptor-targeted poly (lactide-co-Glycolide) (PLGA)-Polyethylene glycol (PEG) nanoparticle is developed for encapsulation and delivery of disulfiram into breast cancer cells. After a comprehensive characterization of nanoparticles, cell cytotoxicity, apoptosis induction, cellular uptake and intracellular level of reactive oxygen species are analyzed. In vivo acute and chronic toxicity of nanoparticles and their efficacy on inhibition of breast cancer tumor growth is studied.
View Article and Find Full Text PDFThe aim of this work was to synthesize molecularly imprinted polymer-poly ethylene glycol-folic acid (MIP-PEG-FA) nanoparticles for use as a controlled release carrier for targeting delivery of paclitaxel (PTX) to cancer cells. MIP nanoparticles were synthesized by a mini-emulsion polymerization technique and then PEG-FA was conjugated to the surface of nanoparticles. Nanoparticles showed high drug loading and encapsulation efficiency, 15.
View Article and Find Full Text PDFRecently, it is suggested that mTOR signaling pathway is an important mediator in many cancers especially breast cancer. Therefore, effects of sirolimus as a mTOR inhibitor in breast cancer have been studied in combination with paclitaxel with or without controlled release effect. In this work, we prepared a water-soluble formulation of sirolimus-conjugated albumin nanoparticles loaded with paclitaxel, to study the effects of sirolimus concentration when it releases more later than paclitaxel in comparison with sirolimus-paclitaxel-loaded albumin nanoparticles.
View Article and Find Full Text PDFNanoparticles have been considered to improve delivery and physicochemical characteristics of bioactive agents in recent years. In this study, a core-shell chitosan nanoparticulate system was prepared for the targeted delivery of SN-38. SN-38, an active metabolite of camptothecin, conjugated to hyaluronic acid (HA) was used as the shell of chitosan nanoparticles decorated with MUC1 aptamer.
View Article and Find Full Text PDFToday, using nanoparticle-based drug delivery systems has expanded to avoid anticancer side effects. Taxanes are important chemotherapeutic agents in the treatment of metastatic breast cancer. In this study, docetaxel (DTX)-loaded human serum albumin (HSA) nanoparticles (NPs) were prepared and characterized.
View Article and Find Full Text PDFBackground: Nanoparticles (NPs) play an important role in anticancer delivery systems. Surface modified NPs with hydrophilic polymers such as human serum albumin (HSA) have long half-life in the blood circulation system.
Methods: The method of modified nanoprecipitation was utilized for encapsulation of paclitaxel (PTX) in poly (lactic-co-glycolic acid) (PLGA).
An aptamer (Apt) conjugated hyaluronan/chitosan nanoparticles (HACSNPs) were prepared as carrier for targeted delivery of 5-fluorouracil (5FU) to mucin1 (MUC1) overexpressing colorectal adenocarcinomas. Nanoparticles had about 181 nm size, encapsulation efficiency of 45.5 ± 2.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
October 2014
Background: Cancer stem cells (CSC) have been proposed as the reason of cancer relapse which are characterized mainly based on CD44+ phenotype with other supplementary markers. The aim of the present study is to fabricate cis-dichlorodiamminoplatinum (II) (CDDP) loaded glyconanoparticles using hyaluronic acid (HA) which is also known as the endogenous substrate for CD44 in vivo.
Methods: For this purpose, a drug-induced ionic gelation technique has been used to prepare CDDP-incorporated nanoparticles.
Background: Low drug entrapment efficiency of hydrophilic drugs into poly(lactic-co-glycolic acid) (PLGA) nanoparticles is a major drawback. The objective of this work was to investigate different methods of producing PLGA nanoparticles containing minocycline, a drug suitable for periodontal infections.
Methods: Different methods, such as single and double solvent evaporation emulsion, ion pairing, and nanoprecipitation were used to prepare both PLGA and PEGylated PLGA nanoparticles.
J Chromatogr B Analyt Technol Biomed Life Sci
June 2010
In this study, a novel method is described for the determination of tramadol in biological fluids using molecularly imprinted solid-phase extraction (MISPE) as the sample clean-up technique combined with high-performance liquid chromatography (HPLC). The water-compatible molecularly imprinted polymers (MIPs) were prepared using methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross-linker, chloroform as porogen and tramadol as template molecule. The novel imprinted polymer was used as a solid-phase extraction (SPE) sorbent for the extraction of tramadol from human plasma and urine.
View Article and Find Full Text PDF