Publications by authors named "Mehdi Djelloul"

Alzheimer's disease (AD) is the most common form of dementia characterized by progressive memory loss and cognitive decline. Although neuroinflammation and oxidative stress are well-recognized features of AD, their correlations with the early molecular events characterizing the pathology are not yet well clarified. Here, we characterize the role of RAGE-TXNIP axis in neuroinflammation in relation to amyloid-beta (Aβ) burden in both in vivo and in vitro models.

View Article and Find Full Text PDF

Research on energy homeostasis has focused on neuronal signaling; however, the role of glial cells has remained little explored. Glial endozepines exert anorexigenic actions by mechanisms which remain poorly understood. In this context, the present study was designed to decipher the mechanisms underlying the anorexigenic action of endozepines and to investigate their potential curative effect on high-fat diet-induced obesity.

View Article and Find Full Text PDF

In this Letter, the vertical error bars were missing from Fig. 3b and 3c. This figure has been corrected online.

View Article and Find Full Text PDF

Oligodendrocytes wrap nerve fibres in the central nervous system with layers of specialized cell membrane to form myelin sheaths. Myelin is destroyed by the immune system in multiple sclerosis, but myelin is thought to regenerate and neurological function can be recovered. In animal models of demyelinating disease, myelin is regenerated by newly generated oligodendrocytes, and remaining mature oligodendrocytes do not seem to contribute to this process.

View Article and Find Full Text PDF

The central nervous system monitors modifications in metabolic parameters or hormone levels (leptin) and elicits adaptive responses such as food intake and glucose homeostasis regulation. Particularly, within the hypothalamus, pro-opiomelanocortin (POMC) neurons are crucial regulators of energy balance. Consistent with a pivotal role of the melanocortin system in the control of energy homeostasis, disruption of the Pomc gene causes hyperphagia and obesity.

View Article and Find Full Text PDF

Induced pluripotent stem cells (iPSCs) are becoming an important source of pre-clinical models for research focusing on neurodegeneration. They offer the possibility for better understanding of common and divergent pathogenic mechanisms of brain diseases. Moreover, iPSCs provide a unique opportunity to develop personalized therapeutic strategies, as well as explore early pathogenic mechanisms, since they rely on the use of patients' own cells that are otherwise accessible only post-mortem, when neuronal death-related cellular pathways and processes are advanced and adaptive.

View Article and Find Full Text PDF

The central control of energy balance involves a highly regulated neuronal network within the hypothalamus and the dorsal vagal complex. In these structures, pro-opiomelanocortin (POMC) neurons are known to reduce meal size and to increase energy expenditure. In addition, leptin, a peripheral signal that relays information regarding body fat content, modulates the activity of melanocortin pathway neurons including POMC-, Agouti-related peptide (AgRP)/Neuropeptide Y (NPY)-, melanocortin receptors (MC3R and MC4R)-expressing neurons.

View Article and Find Full Text PDF

Oligodendrocytes are part of the glial cells located in the central nervous system, capable of providing trophic support to neurons and ensheathing their axons. These cells can become dysfunctional under pathologic condition. Rodent and human pluripotent stem cells are inexhaustible sources for producing oligodendrocytes that can be used for disease modeling and cell replacement therapy studies.

View Article and Find Full Text PDF

Endocrine-disrupting chemicals (EDCs) are diverse natural and synthetic chemicals that may alter various mechanisms of the endocrine system and produce adverse developmental, reproductive, metabolic, and neurological effects in both humans and wildlife. Research on EDCs has revealed that they use a variety of both nuclear receptor-mediated and non-receptor-mediated mechanisms to modulate different components of the endocrine system. The molecular mechanisms underlying the effects of EDCs are still under investigation.

View Article and Find Full Text PDF

Retinoic acid early induced transcript-1 (RAE-1) glycoproteins are ligands of the activating immune receptor NKG2D. They are known as stress molecules induced in pathological conditions. We previously reported that progenitor cells express RAE-1 in physiological conditions and we described a correlation between RAE-1 expression and cell proliferation.

View Article and Find Full Text PDF

In this study, we sought evidence for alpha-synuclein (ASYN) expression in oligodendrocytes, as a possible endogenous source of ASYN to explain its presence in glial inclusions found in multiple system atrophy (MSA) and Parkinson's disease (PD). We identified ASYN in oligodendrocyte lineage progenitors isolated from the rodent brain, in oligodendrocytes generated from embryonic stem cells, and in induced pluripotent stem cells produced from fibroblasts of a healthy individual and patients diagnosed with MSA or PD, in cultures in vitro. Notably, we observed a significant decrease in ΑSYN during oligodendrocyte maturation.

View Article and Find Full Text PDF
Article Synopsis
  • Astrocytes are key players in the development and maintenance of the central nervous system (CNS), but studying them is challenging due to accessibility issues in fetuses and diseased patients.
  • Human pluripotent stem cells (PSCs) offer a promising alternative to produce large quantities of astrocytes for research, though obtaining pure populations can be difficult with existing methods.
  • The study introduces a new method to generate and purify astrocytes using PSC reporter lines that express a fluorescent protein, allowing for easier isolation and research into astrocyte functions, such as their response to inflammation and protein degradation.
View Article and Find Full Text PDF

The central nervous system (CNS) monitors modifications in metabolic parameters or hormone levels and elicits adaptive responses such as food intake regulation. Particularly, within the hypothalamus, leptin modulates the activity of pro-opiomelanocortin (POMC) neurons which are critical regulators of energy balance. Consistent with a pivotal role of the melanocortin system in the control of energy homeostasis, disruption of the POMC gene causes hyperphagia and obesity.

View Article and Find Full Text PDF

Scope: Deoxynivalenol (DON) is the most common fungi toxin contaminating cereals and cereal-derived products. High consumption of DON is implicated in mycotoxicoses and causes a set of symptoms including diarrhea, vomiting, reduced weight gain or immunologic effects. However, such clinical intoxications are rare in humans, who are most frequently, exposed to low DON doses without developing acute symptoms.

View Article and Find Full Text PDF

Epidemiological studies reveal growing evidence that most cases of Alzheimer`s Disease (AD) likely involve a combination of genetic and environmental risk factors. Identifying and validating these risk factors remains one of the most critical scientific challenges. Several diseases appear to have strong implications for neurodegeneration leading to dementia.

View Article and Find Full Text PDF

T-2 toxin is one of the most toxic Fusarium-derived trichothecenes found on cereals and constitutes a widespread contaminant of agricultural commodities as well as commercial foods. Low doses toxicity is characterized by reduced weight gain. To date, the mechanisms by which this mycotoxin profoundly modifies feeding behavior remain poorly understood and more broadly the effects of T-2 toxin on the central nervous system (CNS) have received limited attention.

View Article and Find Full Text PDF

Spinal cord injury (SCI) triggers a complex cellular response at the injury site, leading to the formation of a dense scar tissue. Despite this local tissue remodeling, the consequences of SCI at the cellular level in distant rostral sites (i.e.

View Article and Find Full Text PDF