The DNA-directed assembly of nano-objects has been the subject of many recent studies as a means to construct advanced nanomaterial architectures. Although much experimental in silico work has been presented and discussed, there has been no in-depth consideration of the proper design of single-strand sticky termination of DNA sequences, noted as ssST, which is important in avoiding self-folding within one DNA strand, unwanted strand-to-strand interaction, and mismatching. In this work, a new comprehensive and computationally efficient optimization algorithm is presented for the construction of all possible DNA sequences that specifically prevents these issues.
View Article and Find Full Text PDFThe surface chemistry associated with the synthesis of energetic nanolaminates controls the formation of the critical interfacial layers that dominate the performances of nanothermites. For instance, the interaction of Al with CuO films or CuO with Al films needs to be understood to optimize Al/CuO nanolaminates. To that end, the chemical mechanisms occurring during early stages of molecular CuO adsorption onto crystalline Al(111) surfaces are investigated using density functional theory (DFT) calculations, leading to the systematic determination of their reaction enthalpies and associated activation energies.
View Article and Find Full Text PDFProbing biomolecular flexibility with atomic-scale resolution is a challenging task in current computational biology for fundamental understanding and prediction of biomolecular interactions and associated functions. This paper makes use of the static mode method to study HIV-1 protease considered as a model system to investigate the full biomolecular flexibility at the atomic scale, the screening of active site biomechanical properties, the blind prediction of allosteric sites, and the design of multisite strategies to target deformations of interest. Relying on this single calculation run of static modes, we demonstrate that in silico predictive design of an infinite set of complex excitation fields is reachable, thanks to the storage of the static modes in a data bank that can be used to mimic single or multiatom contact and efficiently anticipate conformational changes arising from external stimuli.
View Article and Find Full Text PDFA general bottom-up modeling strategy for gas sensor response to CO, O(2), H(2)O, and related mixtures exposure is demonstrated. In a first stage, we present first principles calculations that aimed at giving an unprecedented review of basic chemical mechanisms taking place at the sensor surface. Then, simulations of an operating gas sensor are performed via a mesoscopic model derived from calculated density functional theory data into a set of differential equations.
View Article and Find Full Text PDFWe investigate the conformational changes of the Amyloid β(1-16) peptide induced by moving Zn(2+) ions in the solvent, which we call the electrostatic probe. We use our recently developed approach of static modes which allows treating the flexibility of biological molecules at the atomic scale. Starting from an experimental apostructure, we find that several ion impacts allow the transition of the peptide toward its folded conformation, observed experimentally in the presence of Zn(2+) ions.
View Article and Find Full Text PDFA Static Mode approach is used to screen the biomechanical properties of DHFR. In this approach, a specific external stimulus may be designed at the atomic scale granularity to arrive at a proper molecular mechanism. In this frame, we address the issues related to the overall molecular flexibility versus loop motions and versus enzymatic activity.
View Article and Find Full Text PDFWe report on a novel approach for controlling nanohydrodynamic properties at the solid-liquid interfaces through the use of stimuli-responding polymer coatings. The end-tethered polymers undergo a phase separation upon external activation. The reversible change in the thickness and polarity of the grafted polymers yields in a dynamic control of the surface-generated, electrokinetic phenomena.
View Article and Find Full Text PDF