Given their substantial neutron capture cross-section, extreme hardness, and high chemical and thermal stability, boron-based materials are widely used as building blocks to protect against highly ionizing radiations such as gamma rays and neutrons. Indeed, uncontrolled nuclear radiation exposure can be highly hazardous to radiation workers and the public. In this sense, this work presents an extensive study and experimental evaluation of the nuclear shielding features of hexagonal-boron nitride (h-BN) based nanocomposite, where bisphenol-A based polybenzoxazine (BA-PBz) was used as matrix.
View Article and Find Full Text PDFAiming the development of advanced and lightweight thermal neutrons shields, a new hybrid composite was developed from UHMWPE fibers, epoxy and boron carbide (BC) particles. The UHMWPE fibres were chosen because of their high hydrogen contents and exceptional mechanical properties. The neutrons shielding tests were performed using an optimized experimental setup at NUR research reactor, Algiers.
View Article and Find Full Text PDFHigh performance thermosetting resins are targeted in many exigent applications, such as aerospace and marine fields, for the development of lightweight structural composites. Till now, these industries only rely on petroleum-based materials for their supposedly better performances. However, the latest developments in the field suggest otherwise.
View Article and Find Full Text PDFIn the frame of developing sustainable, eco-friendly and high performance materials, microcrystalline cellulose modified through silane coupling agent (MCC Si) is used as a reinforcing agent of benzoxazine resin to manufacture composites at different loadings of 5, 10, 15, 20 wt%. The structural, morphological and crystallinity characterizations of the modified MCC were initially performed to scrutinize the changes and confirm the modification. Then, an investigation on the crosslinking process of the prepared composites was held through curing kinetic study employing isoconversional methods.
View Article and Find Full Text PDFIn the present work, giant reed cellulosic fibers (Arundo donax L., RF) were explored as reinforcement of bisphenol A-based benzoxazine (BA-a). RF were extracted from giant reed cane, and subjected to different chemical treatments using either alkaline, silane or their combining treatments.
View Article and Find Full Text PDFOver the past few years, nanocellulose (NC), cellulose in the form of nanostructures, has been proved to be one of the most prominent green materials of modern times. NC materials have gained growing interests owing to their attractive and excellent characteristics such as abundance, high aspect ratio, better mechanical properties, renewability, and biocompatibility. The abundant hydroxyl functional groups allow a wide range of functionalizations chemical reactions, leading to developing various materials with tunable features.
View Article and Find Full Text PDFThis work studied the structural, morphological, mechanical, and thermal properties of newly designed polymeric materials using high-performance hybrid fibers to reinforce the polybenzoxazine resins. To achieve this goal, hybrid fibers consisting of chopped Kevlar and carbon fibers were subjected to a silane surface treatment, incorporated into the resin matrix in various combinations, and then isothermally cured using the compression molding technique. The mechanical performances of the prepared composites were scrutinized in terms of bending and tensile tests.
View Article and Find Full Text PDF