After allogeneic hematopoietic stem-cell transplantation (alloHSCT), the chimerism assay is used to monitor cell engraftment and quantify the respective proportions of donor/recipient cells in blood or bone-marrow samples. Here, we aimed to better assess the utility of determining CD3 cell chimerism within the first 6 months post alloHSCT. One hundred and thirty five patients diagnosed with acute myeloid leukemia were enrolled in this study.
View Article and Find Full Text PDFBackground: Gutless adenovirus (helper-dependent adenoviral vector; HDAd) and lentiviral vectors (LV) are attractive vectors for the gene therapy of muscle diseases. Because the organization of their DNA (episomal versus integrated) differs, we investigated whether the strength and specificity of ΔUSEx3, a novel muscle-specific promoter previously tested with plasmid, were maintained in the context of these vectors.
Methods: Two HDAds expressing β-galactosidase regulated by ΔUSEx3 or CAG [cytomegalovirus (CMV) enhancer/β-actin promoter], and three LV expressing green fluorescent protein regulated by ΔUSEx3, CMV or a modified skeletal α-actin promoter (SPcΔ5-12), were constructed.
High-level tissue-specific expression of recombinant proteins in muscle is an important issue for several therapeutic applications. To achieve this goal, we generated several constructs containing one to five copies of the upstream enhancer (USE) of 160-bp of the human slow troponin I gene, linked to that gene's minimal promoter. We also tested constructs made with one to four copies of a 100-bp deletion of USE (DeltaUSE) reported to drive pan-muscle-specific expression in transgenic mice.
View Article and Find Full Text PDF