Publications by authors named "Mehdi Bahrami"

A scalable and cost-effective solution for removing pollutants from water is to use biodegradable and eco-friendly sorbents that are readily available such as starch. The current research explored the removal of crystal violet (CV) dye from water using chemically modified potato starch. The adsorbent was prepared by cross-linking potato starch with sodium trimetaphosphate (STMP).

View Article and Find Full Text PDF

The mathematical model's usage in water quality prediction has received more interest recently. In this research, the potential of random forest regression (RFR), Bayesian multiple linear regression (BMLR), and multiple linear regression (MLR) were examined to predict the amount of 2,4-dichlorophenoxy acetic acid (2,4-D) elimination by rice husk biochar from synthetic wastewater, using five input operating parameters including initial 2,4-D concentration, adsorbent dosage, pH, reaction time, and temperature. The equilibrium and kinetic adsorption data were fitted best to the Freundlich and pseudo-first-order models.

View Article and Find Full Text PDF

Groundwater resources in arid and semi-arid regions are the most and sometimes the only water resource used for agricultural, industrial, and urban water supply. Irregular and immense application of nitrogen fertilizers in the lands under cultivation and nitrate leakage from livestock farming have affected the groundwater quality. In such areas, nitrate is one of the main pollutants in the groundwater.

View Article and Find Full Text PDF

Bio-apatite based materials were prepared from bovine bone wastes (BBW) by thermal treatments using a direct flame (BBS) and annealing at 500-1,100 °C (BB500-BB1100). These low-crystalline materials were characterized by means of SEM, XRD, FTIR, TG, and pH and were used for the adsorption of Hg(II) ions. A CCD-RSM design was used to optimize and analyze independent variables consisting of initial mercury concentration (10-100 mg L), pH (2-9), adsorbent mass (0.

View Article and Find Full Text PDF

The 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide, as an aromatic hydrocarbon, is a dangerous and toxic organic pollutant among the agricultural pesticides. In this research, the performance of the biochar made from rice husk (BRH), granular activated carbon (GAC), and multi-walled carbon nanotubes (MWCNTs) was investigated for adsorption of 2,4-D in a fixed-bed column system. The influence of pH (2, 5, 7, 9), flow rate (0.

View Article and Find Full Text PDF

The potential of a granular activated carbon (GAC), a rice husk biochar (BRH), and multi-walled carbon nanotubes (MWCNTs) for removing 2,4-dichlorophenoxyacetic acid (2,4-D) from simulated wastewater and drainage water has been evaluated. In this regard, a response surface methodology (RSM) with a central composite design (CCD) (CCD-RSM design) was used to optimize the removal of 2,4-D from simulated wastewater under different operational parameters. The maximum adsorption capacities followed the order GAC > BRH > MWCNTs, whereas the equilibrium time increased in the order MWCNTs < GAC < BRH.

View Article and Find Full Text PDF

Permanent monitoring of environmental issues demands efficient, accurate, and user-friendly pollutant prediction methods, particularly from operating variables. In this research, the efficiency of multiple polynomial regression in predicting the adsorption capacity of caffeine (q) from an experimental batch mode by multi-walled carbon nanotubes (MWCNTs) was investigated. The MWCNTs were specified by scanning electron microscope, Fourier transform infrared spectroscopy and point of zero charge.

View Article and Find Full Text PDF

The lens of the eye has a gradient refractive index (GRIN). Ocular accommodation, which alters the shape of the lens in response to visual demand, causes a redistribution of the internal structure of the lens leading to a change in the GRIN profile. The nature of this redistribution and the consequence of change in the GRIN profile are not understood.

View Article and Find Full Text PDF

The eye lens grows throughout life by cell accrual on its surface and can change shape to adjust the focussing power of the eye. Varying concentrations of proteins in successive cell layers create a refractive index gradient. The continued growth of the lens and age-related changes in proteins render it less able to alter shape with loss of capacity by the end of the sixth decade of life.

View Article and Find Full Text PDF

A major structure/function relationship in the eye lens is that between the constituent proteins, the crystallins and the optical property of refractive index. Structural breakdown that leads to cataract has been investigated in a number of studies; the concomitant changes in the optics, namely increases in light attenuation have also been well documented. Specific changes in the refractive index gradient that cause such attenuation, however, are not well studied because previous methods of measuring refractive index require transparent samples.

View Article and Find Full Text PDF

The refractive index distribution of the geometry-invariant gradient refractive index lens (GIGL) model is derived as a function of Cartesian coordinates. The adjustable external geometry of the GIGL model aims to mimic the shape of the human and animal crystalline lens. The refractive index distribution is based on an adjustable power-law profile, which provides additional flexibility of the model.

View Article and Find Full Text PDF

The structural basis of zones of discontinuity in the living human eye lens has not been elucidated, and there is no conclusive explanation for what relevance they may have to the structure and function of the lens. Newly developed synchrotron radiation based X-ray Talbot interferometry has enabled the detection of subtle fluctuations in the human eye lens which, when used in mathematical modelling to simulate reflected and scattered light, can recreate the image of the lens seen in the living human eye. The results of this study show that the zones of discontinuity may be caused by subtle fluctuations in the refractive index gradient as well as from random scattering in the central regions.

View Article and Find Full Text PDF

We present an analytical method to describe the accommodative changes in the human crystalline lens. The method is based on the geometry-invariant lens model, in which the gradient-index (GRIN) iso-indicial contours are coupled to the external shape. This feature ensures that any given number of iso-indicial contours does not change with accommodation, which preserves the optical integrity of the GRIN structure.

View Article and Find Full Text PDF

Employing advanced technologies in studying the crystalline lens of the eye has improved our understanding of the refractive index gradient of the lens. Reconstructing and studying such a complex structure requires models with adaptable internal geometry that can be altered to simulate geometrical and optical changes of the lens with aging. In this Letter, we introduce an optically well-defined, geometrical structure for modeling the gradient refractive index profile of the crystalline lens with the advantage of an adjustable internal structure that is not available with existing models.

View Article and Find Full Text PDF

Interface layers between reactive and energetic materials in nanolaminates or nanoenergetic materials are believed to play a crucial role in the properties of nanoenergetic systems. Typically, in the case of Metastable Interstitial Composite nanolaminates, the interface layer between the metal and oxide controls the onset reaction temperature, reaction kinetics, and stability at low temperature. So far, the formation of these interfacial layers is not well understood for lack of in situ characterization, leading to a poor control of important properties.

View Article and Find Full Text PDF

A dispersive model of a gradient refractive index (GRIN) lens is introduced based on the idea of iso-dispersive contours. These contours have constant Abbe number and their shape is related to iso-indicial contours of the monochromatic geometry-invariant GRIN lens (GIGL) model. The chromatic GIGL model predicts the dispersion throughout the GRIN structure by using the dispersion curves of the surface and the center of the lens.

View Article and Find Full Text PDF

A new class of gradient refractive index (GRIN) lens is introduced and analyzed. The interior iso-indicial contours mimic the external shape of the lens, which leads to an invariant geometry of the GRIN structure. The lens model employs a conventional surface representation using a coincoid of revolution with a higher-order aspheric term.

View Article and Find Full Text PDF

For off-zenith observations with ground-based astronomical telescopes, the effect of atmospheric dispersion relative to diffraction on image size increases with telescope diameter. Correction of atmospheric dispersion in extremely large telescopes (ELTs) might become critical. A common solution for ELTs is to use linear atmospheric dispersion correctors (ADCs).

View Article and Find Full Text PDF

The current trend in building medium-size telescopes for wide-field imaging is to use a Ritchey-Chrétien (RC) design with a multilens corrector near the focus. Our goal is to find a cost-effective alternative design to the RC system for seeing-limited observations. We present an f/4.

View Article and Find Full Text PDF

Objective: The aim of this study was to evaluate the seroprevalence of anti-H. pylori and anti-CagA antibodies in healthy children and to investigate those relation with age, sex, ABO blood groups and Rh status.

Methods: Serum samples from 386 children (187 males; 199 females), aged 1-15 years were tested for the presence of antibody to H.

View Article and Find Full Text PDF