Epithelial polarity is fundamental in maintaining barrier integrity and tissue protection. In cystic fibrosis (CF), apicobasal polarity of the airway epithelium is altered, resulting in increased apical fibronectin deposition and enhanced susceptibility to bacterial infections. Here, we evaluated the effect of highly effective modulator treatment (HEMT) on fibronectin apical deposition and investigated the intracellular mechanisms triggering the defect in polarity of the CF airway epithelium.
View Article and Find Full Text PDFDefective hydration of airway surface mucosa is associated with lung infection in cystic fibrosis (CF), partly caused by disruption of the epithelial barrier integrity. Although rehydration of the CF airway surface liquid (ASL) alleviates epithelium vulnerability to infection by junctional protein expression, the mechanisms linking ASL to barrier integrity are unknown. We show here the strong degradation of YAP1 and TAZ proteins in well-polarized CF human airway epithelial cells (HAECs), a process that was prevented by ASL rehydration.
View Article and Find Full Text PDFConnexins and pannexins are transmembrane proteins that can form direct (gap junctions) or indirect (connexons, pannexons) intercellular communication channels. By propagating ions, metabolites, sugars, nucleotides, miRNAs, and/or second messengers, they participate in a variety of physiological functions, such as tissue homeostasis and host defense. There is solid evidence supporting a role for intercellular signaling in various pulmonary inflammatory diseases where alteration of connexin/pannexin channel functional expression occurs, thus leading to abnormal intercellular communication pathways and contributing to pathophysiological aspects, such as innate immune defense and remodeling.
View Article and Find Full Text PDFCystic fibrosis (CF) is characterized by chronic bacterial infections leading to progressive bronchiectasis and respiratory failure. Pseudomonas aeruginosa (Pa) is the predominant opportunistic pathogen infecting the CF airways. The guanine nucleotide exchange factor Vav3 plays a critical role in Pa adhesion to the CF airways by inducing luminal fibronectin deposition that favors bacteria trapping.
View Article and Find Full Text PDFDefective hydration of airway surface mucosa is associated with recurrent lung infection in cystic fibrosis (CF), a disease caused by CF transmembrane conductance regulator () gene mutations. Whether the composition and/or presence of an airway surface liquid (ASL) is sufficient to prevent infection remains unclear. The susceptibility to infection of polarized wild type and knockdown (CFTR-KD) airway epithelial cells was determined in the presence or absence of a healthy ASL or physiological saline.
View Article and Find Full Text PDFIt's now clearly established that the tumor microenvironment participates to tumor development. Among the different actors contributing to these processes, ion channels, located at the cancer cell surface, play a major role. We recently demonstrated that the association of Kv10.
View Article and Find Full Text PDFPseudomonas aeruginosa (Pa) represents the leading cause of airway infection in cystic fibrosis (CF). Early airways colonization can be explained by enhanced adhesion of Pa to the respiratory epithelium. RNA sequencing (RNA-seq) on fully differentiated primary cultures of airway epithelial cells from CF and non-CF donors predict that VAV3, β1 INTEGRIN, and FIBRONECTIN genes are significantly enriched in CF.
View Article and Find Full Text PDFNeutrophils are the first immune cells to kill invading microbes at sites of infection using a variety of processes, including the release of proteases, phagocytosis and the production of neutrophil extracellular traps (NETs). NET formation, or NETosis, is a specific and highly efficient process, which is induced by a variety of stimuli leading to expulsion of DNA, proteases and antimicrobial peptides to the extracellular space. However, uncontrolled NETosis may lead to adverse effects and exert tissue damage in pathological conditions.
View Article and Find Full Text PDFIn the last years it has been shown that many components of tumor microenvironment (TM) can induce cell signaling that permit to breast cancer cells (BC) to maintain their aggressiveness. Ion channels have a role in mediating TM signal; recently we have demonstrated a functional collaboration between Kv10.1 and Orai1 channels in mediating the pro-survival effect of collagen 1 on BC cells.
View Article and Find Full Text PDFCollagen type 1 is among the tumor microenvironment (TM) factors, that regulates proliferation, survival, migration and invasion. Ion channels are key players in interactions between tumor cells and TM. Kv10.
View Article and Find Full Text PDF