Publications by authors named "Mehdi Aleahmad"

Urethral reconstruction strategies are limited with many associated drawbacks. In this context, the main challenge is the unavailability of a suitable tissue that can endure urine exposure. However, most of the used tissues in clinical practices are non-specialized grafts that finally fail to prevent urine leakage.

View Article and Find Full Text PDF

Background: Osteoporosis is a sizable comorbidity complication in Rheumatoid Arthritis (RA) sufferers. In the current study, the prevalence of osteopenia and osteoporosis in active RA sufferers and the association of disease-related factors of osteoporosis and reduced bone mineral density (BMD) have been examined.

Methods: In this cross-sectional study, 300 new-onset symptoms (less than one year) RA patients without a history of glucocorticoids or DMARDs were selected.

View Article and Find Full Text PDF

The healing potential of artificial neural guidance channels (NGCs) can be improved by various approaches such as seeding them with supporting cells, the incorporation of various cues, and modification with different fabrication methods. Recently, the therapeutic appeal towards the use of drug-delivering NGCs has increased. In this framework, neuroprotective agents are incorporated into the structure of NGCs using different techniques.

View Article and Find Full Text PDF

Background: Regulatory T cells (Tregs) play an important role in fine-tuning of immune responses and are pivotal for a successful pregnancy. Recently, the importance of mesenchymal stem cells in regulation of immune responses in general and Tregs in particular has been highlighted. Here, we hypothesized that menstrual stromal/stem cells (MenSCs) contribute to uterine immune system regulation through induction of functionally active Tregs.

View Article and Find Full Text PDF

Objectives: Uncontrolled TH17 differentiation has been suggested to play a role in the pathogenesis of pregnancy loss. We recently showed that menstrual blood stromal/stem cells (MenSCs) alter functional features of natural killer cells. Here, we hypothesized that MenSCs could modulate differentiation of TH17 cells.

View Article and Find Full Text PDF

Stem cell-based therapy is known as a regenerative approach for a variety of diseases and tissue injuries. These cells exert their therapeutic effects through paracrine secretions namely extracellular vesicles. To achieve higher therapeutic potential, a variety of delivery routes have been tested in clinical and preclinical studies.

View Article and Find Full Text PDF

Although natural killer (NK) cells play a crucial role in the maintenance of a successful pregnancy, their cytotoxic activity should be tightly controlled. We hypothesized that endometrial mesenchymal stromal/stem cells (eMSCs) could potentially attenuate the functional features of NK cells. Herein, we assessed immunomodulatory effects of menstrual blood-derived stromal/stem cells (MenSCs), as a surrogate for eMSCs, on NK cells function.

View Article and Find Full Text PDF
Article Synopsis
  • - This study is the first to show that menstrual blood-derived stem cells (MenSCs) can effectively promote skin wound healing when transplanted using decellularized human amniotic membrane (DAM).
  • - In the experiment, MenSCs were added to DAM at a specific density and then implanted in rats with full-thickness skin wounds.
  • - The findings revealed that the MenSC-seeded DAM led to significantly better wound closure and healing compared to the DAM alone, suggesting MenSCs could be a promising option for treating skin injuries.
View Article and Find Full Text PDF

Background: It is more than sixty years that the concept of the fetal allograft and immunological paradox of pregnancy was proposed and in this context, several regulatory networks and mechanisms have been introduced so far. It is now generally recognized that mesenchymal stem cells exert potent immunoregulatory activity. In this study, for the first time, the potential impact of Menstrual blood Stem Cells (MenSCs), as surrogate for endometrial stem cells, on proliferative capacity of CD4+ T cells was tested.

View Article and Find Full Text PDF