Bacterial protein secretion systems serve to translocate substrate proteins across up to three biological membranes, a task accomplished by hydrophobic, membrane-spanning macromolecular complexes. The overexpression, purification, and biochemical characterization of these complexes is often difficult, thus impeding progress in understading structure and function of these systems. Blue native (BN) polyacrylamide gel electrophoresis (PAGE) allows for the investigation of these transmembrane complexes right from their originating membranes, without the need of long preparative steps, and is amenable to the parallel characterization of a number of samples under near-native conditions.
View Article and Find Full Text PDFIn the version of this article initially published, the PDB code associated with the study was given as 6F2E but should have been 6F2D in Table 1 and the data availability statement. The error has been corrected in the HTML and PDF versions of the article.
View Article and Find Full Text PDFExport of proteins through type III secretion systems is critical for motility and virulence of many major bacterial pathogens. Three putative integral membrane proteins (FliP, FliQ, FliR) are suggested to form the core of an export gate in the inner membrane, but their structure, assembly and location within the final nanomachine remain unclear. Here, we present the cryoelectron microscopy structure of the Salmonella Typhimurium FliP-FliQ-FliR complex at 4.
View Article and Find Full Text PDFBacterial protein secretion systems serve to translocate substrate proteins across up to three biological membranes, a task accomplished by hydrophobic, membrane-spanning macromolecular complexes. The overexpression, purification, and biochemical characterization of these complexes is often difficult, impeding progress in understanding the structure and function of these systems. Blue native (BN) polyacrylamide gel electrophoresis (PAGE) allows for the investigation of these transmembrane complexes right from their originating membranes, without the need for long preparative steps, and is amenable to the parallel characterization of a number of samples under near-native conditions.
View Article and Find Full Text PDFAlthough the study of phage infection has a long history and catalyzed much of our current understanding in bacterial genetics, molecular biology, evolution and ecology, it seems that microbiologists have only just begun to explore the intricacy of phage-host interactions. In a recent manuscript by Cenens et al. we found molecular and genetic support for pseudolysogenic development in the Typhimurium-phage P22 model system.
View Article and Find Full Text PDFWe discovered a novel interaction between phage P22 and its host Salmonella Typhimurium LT2 that is characterized by a phage mediated and targeted derepression of the host dgo operon. Upon further investigation, this interaction was found to be instigated by an ORFan gene (designated pid for phage P22 encoded instigator of dgo expression) located on a previously unannotated moron locus in the late region of the P22 genome, and encoding an 86 amino acid protein of 9.3 kDa.
View Article and Find Full Text PDFCrit Rev Microbiol
February 2014
Salmonella spp. are accountable for a large fraction of the global infectious disease burden, with most of their infections being food- or water-borne. The phenotypic features and adaptive potential of Salmonella spp.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2008
The Mrr protein of Escherichia coli K12 is a cryptic Type IV restriction endonuclease whose activity appears to be triggered by high pressure stress. In this report we used high pressure to isolate and analyze several Mrr mutants, and generated a new structural model of the Mrr protein. The activity of a number of spontaneous and strategically constructed Mrr mutants is discussed in the light of this model, providing a first insight into the structure-function relationships of the Mrr enzyme.
View Article and Find Full Text PDF