Nitrogen (N) in urban runoff is often treated with green infrastructure including biofilters. However, N fates across biofilters are insufficiently understood because prior studies emphasize low N loading under laboratory conditions, or use "steady-state" flow regimes over short time scales. Here, we tested field scale biofilter N fates during simulated storms delivering realistic transient flows with high N loading.
View Article and Find Full Text PDFThe synergetic effects of metal(loid)s and soil characteristics on bacterial antibiotic resistance genes (ARGs) in green stormwater infrastructure (GSI) has been relatively understudied. Surface soil samples from six GSIs in Southern California over three time periods were assessed for selected ARGs, class 1 integron-integrase genes (intI1), 16S rRNA genes, and bioavailable and total concentrations of nine metal(loid)s, to investigate the relationships among ARGs, soil characteristics, and co-occurring metal(loid)s. Significant correlations existed among relative gene abundances (sul1, sul2, tetW, and intI1), total metal(loid)s (arsenic, copper, lead, vanadium, and zinc), and bioavailable metal(loid) (arsenic) (r = 0.
View Article and Find Full Text PDFIn urban areas, untreated stormwater runoff can pollute downstream surface waters. To intercept and treat runoff, low-impact or "green infrastructure" approaches such as using biofilters are adopted. Yet, actual biofilter pollutant removal is poorly understood; removal is often studied in laboratory columns, with variable removal of viable and culturable microbial cell numbers including pathogens.
View Article and Find Full Text PDFBatch and column laboratory experiments were conducted on natural sediment and groundwater samples from a contaminated site in Maine, USA with the aim of lowering the dissolved arsenate [As(V)] concentrations through chemical enhancement of natural attenuation capacity. In batch factorial experiments, two levels of treatment for three parameters (pH, Ca, and Fe) were studied at different levels of phosphate to evaluate their impact on As(V) solubility. Results illustrated that lowering pH, adding Ca, and adding Fe significantly increased the sorption capacity of sediments.
View Article and Find Full Text PDF