Publications by authors named "Meguya Ryu"

We present a direct comparison of the heat transport properties between the state in which the constituent molecules are assembled by intermolecular forces and the one in which they are covalently bonded, in a molecular system with identical constituent elements and masses, as well as a nearly identical structure and density. This comparison leading to an essential understanding of thermal conduction in organic materials is made possible by the unique compound found by Wudl et al., which exhibits a single-crystal-to-single-crystal topochemical polymerization with a yield of >99%, in combination with microtemperature wave analysis (TWA), which allows accurate measurements of the thermal diffusivity of small single crystals.

View Article and Find Full Text PDF

Unlabelled: Computational methods have been established as cornerstones in optical imaging and holography in recent years. Every year, the dependence of optical imaging and holography on computational methods is increasing significantly to the extent that optical methods and components are being completely and efficiently replaced with computational methods at low cost. This roadmap reviews the current scenario in four major areas namely incoherent digital holography, quantitative phase imaging, imaging through scattering layers, and super-resolution imaging.

View Article and Find Full Text PDF

Polarimetry is used to determine the Stokes parameters of a laser beam. Once all four S0,1,2,3 parameters are determined, the state of polarisation is established. Upon reflection of a laser beam with the defined polarisation state, the directly measured parameters can be used to determine the optical properties of the surface, which modify the -state upon reflection.

View Article and Find Full Text PDF

Although the finding of superelasticity and ferroelasticity in organic crystals has been serendipitous, an increasing number of organic crystals with such deformation properties have been witnessed. Understanding the structure-property relationship can aid in the rational selection of intermolecular interactions to design organic crystals with desired superelastic or ferroelastic properties. In this study, we investigated the mechanical deformation in two cocrystals, prepared with the parent compound, 1,4-diiodotetrafluorobenzene with two coformers, 1,2-bis(4-pyridyl)ethane and pyrene.

View Article and Find Full Text PDF

A two-directional ferroelastic deformation in organic crystals is unprecedented owing to its anisotropic crystal packing, in contrast to isotropic symmetrical packing in inorganic compounds and polymers. Thereby, finding and constructing multidirectional ferroelastic deformations in organic compounds is undoubtedly complex and at once calls for deep comprehension. Herein, we demonstrate the first example of a two-directional ferroelastic deformation with a unique scissor-like movement in single crystals of -3-hexenedioic acid by the application of uniaxial compression stress.

View Article and Find Full Text PDF

A device consisting of a line- or spiral-shaped temperature sensor array on a two-dimensional (2D) silicon nitride (SiNx) membrane of thickness 50 or 150 nm is developed for use in the lock-in photothermal method to determine the in-plane thermal diffusivity of SiNx membranes in air and in vacuum. The results of 2D heat diffusion are analyzed by the quadrupole method, and the system is approximated to the one-dimensional (1D) fin standing in a surrounding media (the fin approximation). The results show that 2D thermal diffusion on the membrane is affected not only by heat exchange with the surrounding environment but also by parallel thermal diffusion caused by heat conduction in the air along the membrane surface.

View Article and Find Full Text PDF

π-Stacking, which is a ubiquitous structural motif in assemblies of aromatic compounds, is well-known to provide a transport pathway for charge carriers and excitons, while its contribution to thermal transport is still unclear. Herein, based on detailed experimental observations of the thermal diffusivity, thermal conductivity, and specific heat of a single-crystalline triphenylene featuring a one-dimensionally π-stacked structure, we describe the nature of thermal transport through the π-stacked columns. We reveal that acoustic phonons are responsible for thermal transport through the π-stacked columns, which exhibit crystal-like behavior.

View Article and Find Full Text PDF

We impregnated the sugar alcohols (SAs) erythritol and mannitol (Man) in >0.1 mm single crystals of a covalent organic framework, COF-300, to propose new solid-state heat storing materials. The fusion-freezing cycles of the Man-COF composite occur in a narrow range of 130-155 °C without large or random supercooling, which has been a crucial problem of SAs, indicating the significance of this materials concept.

View Article and Find Full Text PDF

The analysis of biological samples with polarized infrared spectroscopy (p-IR) has long been a widely practiced method for the determination of sample orientation and structural properties. In contrast to earlier works, which employed this method to investigate the fundamental chemistry of biological systems, recent interests are moving toward "real-world" applications for the evaluation and diagnosis of pathological states. This focal point review provides an up-to-date synopsis of the knowledge of biological materials garnered through linearly p-IR on biomolecules, cells, and tissues.

View Article and Find Full Text PDF

Microlens arrays (MLAs) which are increasingly popular micro-optical elements in compact integrated optical systems were fabricated using a femtosecond direct laser write (fs-DLW) technique in the low-shrinkage SZ2080 photoresist. High-fidelity definition of 3D surfaces on IR transparent CaF substrates allowed to achieve ∼50% transmittance in the chemical fingerprinting spectral region 2-5 μm wavelengths since MLAs were only ∼10 μm high corresponding to the numerical aperture of 0.3 (the lens height is comparable with the IR wavelength).

View Article and Find Full Text PDF

Herein, we give an overview of several less explored structural and optical characterization techniques useful for biomaterials. New insights into the structure of natural fibers such as spider silk can be gained with minimal sample preparation. Electromagnetic radiation (EMR) over a broad range of wavelengths (from X-ray to THz) provides information of the structure of the material at correspondingly different length scales (nm-to-mm).

View Article and Find Full Text PDF

Liquid crystal elastomers that offer exceptional load-deformation response at low frequencies often require consideration of the mechanical anisotropy only along the two symmetry directions. However, emerging applications operating at high frequencies require all five true elastic constants. Here, we utilize Brillouin light spectroscopy to obtain the engineering moduli and probe the strain dependence of the elasticity anisotropy at gigahertz frequencies.

View Article and Find Full Text PDF

THz band-pass filters were fabricated by femtosecond-laser ablation of 25-μm-thick micro-foils of stainless steel and Kapton film, which were subsequently metal coated with a ∼70 nm film, closely matching the skin depth at the used THz spectral window. Their spectral performance was tested in transmission and reflection modes at the Australian Synchrotron's THz beamline. A 25-μm-thick Kapton film performed as a Fabry-Pérot etalon with a free spectral range (FSR) of 119 cm-1, high finesse Fc≈17, and was tuneable over ∼10μm (at ∼5 THz band) with β=30∘ tilt.

View Article and Find Full Text PDF

Polarisation analysis of light-matter interactions established for propagating optical far-fields is now extended into an evanescent field as demonstrated in this study using an attenuated total reflection (ATR) setup and a synchrotron source at THz frequencies. Scalar intensity , rather than a vector -field, is used for absorbance analysis of the s- and p-components of the linearly polarised incident light. Absorption and phase changes induced by the sample and detected at the transmission port of the ATR accessory revealed previously non-accessible anisotropy in the absorption-dispersion properties of the sample probed by the evanescent optical near-field.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers aim to determine the appropriate heating conditions for triggering CL reactions in the crystalline state by examining light emissions from heated crystal samples and using thermogravimetry-differential thermal analysis (TG-DTA).
  • * A new simultaneous measurement technique is introduced that allows for the analysis of how thermal properties within a crystal change and influence the CL reaction, enhancing the understanding of these processes.
View Article and Find Full Text PDF

Based on the principle of the periodic heating method by using cantilever thermocouple nanoprobes, we developed a method and an apparatus to measure the thermal diffusivity of soft materials on a microscale. The contact position of the probe tip with the sample surface was defined by using the phenomenon that the DC component of the thermal electromotive force (EMF) of the probe changes significantly upon contact (i.e.

View Article and Find Full Text PDF

Polarisation analysis in the mid-infrared fingerprint region was carried out on thin (∼1 μm) Si and SiO films evaporated via glancing angle deposition (GLAD) method at 70∘ to the normal. Synchrotron-based infrared microspectroscopic measurements were carried out on the Infrared Microspectroscopy (IRM) beamline at Australian Synchrotron. Specific absorption bands, particularly Si-O-Si stretching vibration, was found to follow the angular dependence of ∼cos2θ, consistent with the absorption anisotropy.

View Article and Find Full Text PDF

Mechanically responsive crystals have been increasingly explored, mainly based on photoisomerization. However, photoisomerization has some disadvantages for crystal actuation, such as a slow actuation speed, no actuation of thick crystals, and a narrow wavelength range. Here we report photothermally driven fast-bending actuation and simulation of a salicylideneaniline derivative crystal with an -amino substituent in enol form.

View Article and Find Full Text PDF

The thermal properties of novel nanomaterials play a significant role in determining the performance of the material in technological applications. Herein, direct measurement of the temperature diffusivity of nanocellulose-doped starch-polyurethane nanocomposite films was carried out by the micro-contact method. Polymer films containing up to 2 wt%.

View Article and Find Full Text PDF

The self-organised conical needles produced by plasma etching of silicon (Si), known as black silicon (b-Si), create a form-birefringent surface texture when etching of Si orientated at angles of θ < 50 - 70 (angle between the Si surface and vertical plasma E-field). The height of the needles in the form-birefringent region following 15 min etching was d ∼ 200 nm and had a 100 μm width of the optical retardance/birefringence, characterised using polariscopy. The height of the b-Si needles corresponds closely to the skin-depth of Si ∼λ/4 for the visible spectral range.

View Article and Find Full Text PDF

Birefringence of 3 × 10 - 3 is demonstrated inside cross-sectional regions of 100 μ m, inscribed by axially stretched Bessel-beam-like fs-laser pulses along the c-axis inside sapphire. A high birefringence and retardance of λ / 4 at mid-visible spectral range (green) can be achieved using stretched beams with axial extension of 30-40 μ m. Chosen conditions of laser-writing ensure that there are no formations of self-organized nano-gratings.

View Article and Find Full Text PDF

Controlling thermoelastic anisotropy of liquid crystals (LCs) is important for achieving reliable structural stability and efficient heat dissipation, especially for high-performance LC devices. A solid understanding of the thermoelastic anisotropy and its relation with the LC molecular structure is, however, still missing. Here, we studied the direction-dependent mechanical and thermal properties of 5--octyl-2-(4--octyloxy-phenyl)-pyrimidine (PYP8O8) in a wide temperature range, covering five phases (i.

View Article and Find Full Text PDF

The nanoscale composition of silk defining its unique properties via a hierarchial structural anisotropy needs to be analysed at the highest spatial resolution of tens of nanometers corresponding to the size of fibrils made of β-sheets, which are the crystalline building blocks of silk. Nanoscale optical and structural properties of silk have been measured from 100 nm thick longitudinal slices of silk fibers with ca. 10 nm resolution, the highest so far.

View Article and Find Full Text PDF

Polariscopy is demonstrated using hyperspectral imaging with a focal plane array (FPA) detector in the infrared (IR) spectral region under illumination by thermal and synchrotron light sources. FPA Fourier-transform IR (FTIR) imaging microspectroscopy is useful for monitoring real time changes at specific absorption bands when combined with a high brightness synchrotron source. In this study, several types of samples with unique structural motifs were selected and used for assessing the capability of polariscopy under this FPA-FTIR imaging technique.

View Article and Find Full Text PDF

Polarised light imaging microscopy, with the addition of a liquid crystal (LC) phase retarder, was used to determine the birefringence of silk fibres with high (∼1 μm) spatial resolution. The measurement was carried out with the silk fibres (the optical slow axis) and the slow axis of the LC-retarder set at parallel angles. The direct fit of the transmission data allowed for high fidelity determination of the birefringence Δn ≈ 1.

View Article and Find Full Text PDF