Publications by authors named "Megumi Iwano"

MID1-COMPLEMENTING ACTIVITY (MCA) is a land plant-specific, plasma membrane protein, and Ca2+ signaling component that responds to exogenous mechanical stimuli, such as touch, gravity, and hypotonic-osmotic stress, in various plant species. MCA is essential for cell proliferation and differentiation during growth and development in rice (Oryza sativa) and maize (Zea mays). However, the mechanism by which MCA mediates cell proliferation and differentiation via Ca2+ signaling remains unknown.

View Article and Find Full Text PDF

In land plants, gametes derive from a small number of dedicated haploid cells. In angiosperms, one central cell and one egg cell are differentiated in the embryo sac as female gametes for double fertilization, while in non-flowering plants, only one egg cell is generated in the female sexual organ, called the archegonium. The central cell specification of Arabidopsis thaliana is controlled by the histidine kinase CYTOKININ-INDEPENDENT 1 (CKI1), which is a two-component signaling (TCS) activator sharing downstream regulatory components with the cytokinin signaling pathway.

View Article and Find Full Text PDF

Photosynthetic electron transfer and its regulation processes take place on thylakoid membranes, and the thylakoid of vascular plants exhibits particularly intricate structure consisting of stacked grana and flat stroma lamellae. It is known that several membrane remodeling proteins contribute to maintain the thylakoid structure, and one putative example is FUZZY ONION LIKE (FZL). In this study, we re-evaluated the controversial function of FZL in thylakoid membrane remodeling and in photosynthesis.

View Article and Find Full Text PDF

Auxin plays pleiotropic roles in plant development via gene regulation upon its perception by the receptors TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX (TIR1/AFBs). This auxin-regulated transcriptional control mechanism originated in the common ancestor of land plants. Although the complete loss of TIR1/AFBs causes embryonic lethality in Arabidopsis thaliana, it is unclear whether the requirement for TIR1-mediated auxin perception in cell viability can be generalized.

View Article and Find Full Text PDF

Selfing is a frequent evolutionary trend in angiosperms, and is a suitable model for studying the recurrent patterns underlying adaptive evolution. Many plants avoid self-fertilization by physiological processes referred to as self-incompatibility (SI). In the Brassicaceae, direct and specific interactions between the male ligand SP11/SCR and the female receptor kinase SRK are required for the SI response.

View Article and Find Full Text PDF

To optimize growth and development, plants monitor photosynthetic activities and appropriately regulate various cellular processes. However, signaling mechanisms that coordinate plant growth with photosynthesis remain poorly understood. To identify factors that are involved in signaling related to photosynthetic stimuli, we performed a phosphoproteomic analysis with Marchantia polymorpha, an extant bryophyte species in the basal lineage of land plants.

View Article and Find Full Text PDF
Article Synopsis
  • - The study identifies a gene called STIGMATIC PRIVACY 1 (SPRI1) in Arabidopsis thaliana that acts as an interspecies barrier, preventing hybrid formation between different species of plants.
  • - SPRI1 is a stigma-specific protein that effectively rejects pollen from distantly related Brassicaceae species, working independently of the plant's self-incompatibility mechanisms.
  • - Experimental results suggest that SPRI1 helps Arabidopsis thaliana achieve successful fertilization with its own species' pollen by blocking unwanted pollen from different species.
View Article and Find Full Text PDF

The sarco/endoplasmic reticulum (SR/ER) is the foremost intercellular Ca store (at submillimolar concentrations), playing a crucial role in controlling intracellular Ca levels. For the investigation of SR/ER Ca dynamics in cells, fluorescent protein-based genetically encoded calcium indicators (GECIs) with low Ca affinity have been used. Recently, bioluminescent protein-based GECIs with high brightness have been reported to counter the constraints of fluorescence imaging, such as phototoxicity.

View Article and Find Full Text PDF

Rhodococcus erythropolis N9T-4, isolated from stored crude oil, shows extremely oligotrophic features and can grow on a basal medium without any additional carbon, nitrogen, sulfur, and energy sources, but requires CO for its oligotrophic growth. Transmission electron microscopic observation showed that a relatively large and spherical compartment was observed in a N9T-4 cell grown under oligotrophic conditions. In most cases, only one compartment was observed per cell, but in some cases, it was localized at each pole of the cell, suggesting that it divides at cell division.

View Article and Find Full Text PDF

Self-incompatibility (SI) in flowering plants is a genetic reproductive barrier to distinguish self- and non-self pollen to promote outbreeding. In Solanaceae, self-pollen is rejected by the ribonucleases expressed in the styles (S-RNases), via its cytotoxic function. On the other side, the male-determinant is the S-locus F-box proteins (SLFs) expressed in pollen.

View Article and Find Full Text PDF

Establishment of apex-polarity. Elongation of the pollen tube is a highly coordinated process involving polarized secretion of cell wall and membrane materials to the apical region. We investigated changes in the localization of soluble NSF attachment proteins (SNAREs) in developing pollen grains and the pollen tube for transgenic Arabidopsis expressing pollen-specific plasma-membrane Qa-SNAREs (SYP124, 125 and 131) fused with the green fluorescent protein (GFP).

View Article and Find Full Text PDF

Reactive oxygen species (ROS) accumulate at the tip of growing pollen tubes. In Arabidopsis, NADPH oxidases RbohH and RbohJ are localized at the plasma membrane of pollen tube tip and produce ROS in a Ca(2+)-dependent manner. The ROS produced by Rbohs and Ca(2+) presumably play a critical role in the positive feedback regulation that maintains the tip growth.

View Article and Find Full Text PDF

Self-incompatibility in the Brassicaceae is controlled by multiple haplotypes encoding the pollen ligand (S-locus protein 11, SP11, also known as S-locus cysteine-rich protein, SCR) and its stigmatic receptor (S-receptor kinase, SRK). A haplotype-specific interaction between SP11/SCR and SRK triggers the self-incompatibility response that leads to self-pollen rejection, but the signalling pathway remains largely unknown. Here we show that Ca(2+) influx into stigma papilla cells mediates self-incompatibility signalling.

View Article and Find Full Text PDF

Pollination is an important early step in sexual plant reproduction. In Arabidopsis thaliana, sequential pollination events, from pollen adhesion onto the stigma surface to pollen tube germination and elongation, occur on the stigmatic papilla cells. Following successful completion of these events, the pollen tube penetrates the stigma and finally fertilizes a female gametophyte.

View Article and Find Full Text PDF

Sexual reproduction is an essential process for generating a genetic variety in the next generation. However, most flowering plants and hermaphroditic animals potentially allow self-fertilization. Approximately 60% of angiosperms possess a self-incompatibility (SI) system to avoid inbreeding.

View Article and Find Full Text PDF

In flowering plants, pollen germinates on the stigma and pollen tubes grow through the style to fertilize the ovules. Enzymatic production of reactive oxygen species (ROS) has been suggested to be involved in pollen tube tip growth. Here, we characterized the function and regulation of the NADPH oxidases RbohH and RbohJ (Respiratory burst oxidase homolog H and J) in pollen tubes in Arabidopsis thaliana.

View Article and Find Full Text PDF

In the Brassicaceae, intraspecific non-self pollen (compatible pollen) can germinate and grow into stigmatic papilla cells, while self-pollen or interspecific pollen is rejected at this stage. However, the mechanisms underlying this selective acceptance of compatible pollen remain unclear. Here, using a cell-impermeant calcium indicator, we showed that the compatible pollen coat contains signaling molecules that stimulate Ca(2+) export from the papilla cells.

View Article and Find Full Text PDF

Self-incompatibility (SI) of the Brassicaceae family can be overcome by CO2 gas treatment. This method has been used for decades as an effective means to obtain a large amount of inbred seeds which can then be used for F1 hybrid seed production; however, the molecular mechanism by which CO2 alters the SI pathway has not been elucidated. In this study, to obtain new insights into the mechanism of CO2-induced SI breakdown, the focus was on two inbred lines of Brassica rapa (syn.

View Article and Find Full Text PDF

Pollination is an early and critical step in plant reproduction, leading to successful fertilization. It consists of many sequential processes, including adhesion of pollen grains onto the surface of stigmatic papilla cells, foot formation to strengthen pollen-stigma interaction, pollen hydration and germination, and pollen tube elongation and penetration. We have focused on an examination of the expressed genes in papilla cells, to increase understanding of the molecular systems of pollination.

View Article and Find Full Text PDF

C4 plants display higher cyclic electron transport activity than C3 plants. This activity is suggested to be important for the production of ATPs required for C4 metabolism. To understand the process by which photosystem I (PSI) cyclic electron transport was promoted during C4 evolution, we conducted comparative analyses of the functionality of PSI cyclic electron transport among members of the genus Flaveria, which contains several C3, C3-C4 intermediate, C4-like and C4 species.

View Article and Find Full Text PDF

TILLING (Targeting Induced Local Lesions IN Genomes) is a reverse genetic method that can be employed to generate allelic series of induced mutations in targeted genes for functional analyses. To date, TILLING resources in Arabidopsis thaliana are only available in accessions Columbia and Landsberg erecta. Here, we extended the Arabidopsis TILLING resources by developing a new population of ethyl methanesulfonate (EMS)-induced mutant lines in another commonly used A.

View Article and Find Full Text PDF

In mammals, the prototypical endoplasmic reticulum (ER) stress sensor inositol-requiring enzyme 1 (IRE1) has diverged into two paralogs. IRE1α is broadly expressed and mediates the unconventional splicing of X-box binding protein 1 (XBP1) mRNA during ER stress. By contrast, IRE1β is expressed selectively in the digestive tract, and its function remains unclear.

View Article and Find Full Text PDF

The directional growth of the pollen tube from the stigma to the embryo sac in the ovules is regulated by pollen-pistil interactions based on intercellular communication. Although pollen tube growth is regulated by the cytoplasmic Ca(2+) concentration ([Ca(2+)](cyt)), it is not known whether [Ca(2+)](cyt) is involved in pollen tube guidance and reception. Using Arabidopsis expressing the GFP-based Ca(2+)-sensor yellow cameleon 3.

View Article and Find Full Text PDF

Biofilms are surface-associated bacterial aggregates, in which bacteria are enveloped by polymeric substances known as the biofilm matrix. Bacillus subtilis biofilms display persistent resistance to liquid wetting and gas penetration, which probably explains the broad-spectrum resistance of the bacteria in these biofilms to antimicrobial agents. In this study, BslA (formerly YuaB) was identified as a major contributor to the surface repellency of B.

View Article and Find Full Text PDF

Self-incompatibility (SI) in angiosperms prevents inbreeding and promotes outcrossing to generate genetic diversity. In many angiosperms, self/non-self recognition in SI is accomplished by male-specificity and female-specificity determinants (S-determinants), encoded at the S-locus. Recent studies using genetic, molecular biological and biochemical approaches have revealed that angiosperms utilize diverse self/non-self discrimination systems, which can be classified into two fundamentally different systems, self-recognition and non-self recognition systems.

View Article and Find Full Text PDF