Despite significant improvement in survival rates of patients with breast cancer, prognosis of metastatic disease is still dismal. Cancer stem-like cells (CSC) are considered to play a role in metastatic progression of breast cancer; however, the exact pathologic role of CSCs is yet to be elucidated. In this report, we found that CSCs (CD24(-)/CD44(+)/ESA(+)) isolated from metastatic breast cell lines are significantly more metastatic than non-CSC populations in an organ-specific manner.
View Article and Find Full Text PDFWnt signalling has pivotal roles in tumour progression and metastasis; however, the exact molecular mechanism of Wnt signalling in the metastatic process is as yet poorly defined. Here we demonstrate that the tumour metastasis suppressor gene, NDRG1, interacts with the Wnt receptor, LRP6, followed by blocking of the Wnt signalling, and therefore, orchestrates a cellular network that impairs the metastatic progression of tumour cells. Importantly, restoring NDRG1 expression by a small molecule compound significantly suppressed the capability of otherwise highly metastatic tumour cells to thrive in circulation and distant organs in animal models.
View Article and Find Full Text PDFNDRG1 and KAI1 belong to metastasis suppressor genes, which impede the dissemination of tumor cells from primary tumors to distant organs. Previously, we identified the metastasis promoting transcription factor, ATF3, as a downstream target of NDRG1. Further analysis revealed that the KAI1 promoter contained a consensus binding motif of ATF3, suggesting a possibility that NDRG1 suppresses metastasis through inhibition of ATF3 expression followed by activation of the KAI1 gene.
View Article and Find Full Text PDF