Non-invasive, rapid, on-site detection and identification of body fluids is highly desired in forensic investigations. The use of fluorescence-based methods for body fluid identification, have so far remain relatively unexplored. As such, the fluorescent properties of semen, serum, urine, saliva and fingermarks over time were investigated, by means of fluorescence spectroscopy, to identify specific fluorescent signatures for body fluid identification.
View Article and Find Full Text PDFRecent advances in next-generation sequencing technologies (NGS) coupled with machine learning have demonstrated the potential of microbiome-based analyses in applied areas such as clinical diagnostics and forensic sciences. Particularly in forensics, microbial markers in biological stains left at a crime scene can provide valuable information for the reconstruction of crime scene cases, as they contain information on bodily origin, the time since deposition, and donor(s) of the stain. Importantly, microbiome-based analyses provide a complementary or an alternative approach to current methods when these are limited or not feasible.
View Article and Find Full Text PDFThe availability of endogenous and dietary carbohydrates in the gastrointestinal tract influences the composition of the gut microbiota. Carbohydrate foraging requires the action of bacterially-encoded glycoside hydrolases, which release mono- and oligosaccharides taken up as carbon sources by multiple microbial taxa. In addition to providing nutrients to the microbiota, the cleavage of host glycans by bacterial glycoside hydrolases may alter the properties of surface glycoproteins involved in cell adhesion and activation processes in the gut lumen.
View Article and Find Full Text PDF