Red blood cells (RBC) from patients with sickle cell disease (SCD) have elevated calcium levels at baseline, which are further elevated upon deoxygenation. Here we examined baseline calcium levels and calcium flux in RBCs from a mouse model of SCD mice. We found that akin to humans with SCD, sickle (HbSS) Townes mice, have higher baseline levels and increased calcium flux in RBCs compared to control (HbAA) animals.
View Article and Find Full Text PDFThe root cause of sickle cell disease (SCD) is the polymerization of sickle hemoglobin (HbS) leading to sickling of red blood cells (RBC). Earlier studies showed that in patients with SCD, high-dose nitrite inhibited sickling, an effect originally attributed to HbS oxidation to methemoglobin-S even though the anti-sickling effect did not correlate with methemoglobin-S levels. Here, we examined the effects of nitrite on HbS polymerization and on methemoglobin formation in a SCD mouse model.
View Article and Find Full Text PDFThe nucleotide-binding domain leucine-rich repeat containing protein 3 (NLRP3) inflammasome is a critical inflammatory mechanism identified in platelets, which controls platelet activation and aggregation. We have recently shown that the platelet NLRP3 inflammasome is upregulated in sickle cell disease (SCD), which is mediated by Bruton tyrosine kinase (BTK). Here, we investigated the effect of pharmacological inhibition of NLRP3 and BTK on platelet aggregation and the formation of in vitro thrombi in Townes SCD mice.
View Article and Find Full Text PDFStrokes are feared complications of sickle cell disease (SCD) and yield significant neurologic and neurocognitive deficits. However, even without detectable strokes, SCD patients have significant neurocognitive deficits in domains of learning and memory, processing speed and executive function. In these cases, mechanisms unrelated to major cerebrovascular abnormalities likely underlie these deficits.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a neurocognitive disorder that impacts both the brain and behavior. Metal ions, including zinc (Zn), have been seen to play an important role in AD-related pathology. In this study, we show alterations in wheel-running behavior both early and late in disease progression in a novel dual Tg mouse model of AD.
View Article and Find Full Text PDFPatients with sickle cell disease (SCD) can develop strokes and as a result, present neurologic and neurocognitive deficits. However, recent studies show that even without detectable cerebral parenchymal abnormalities on imaging studies, SCD patients can have significant cognitive and motor dysfunction, which can present as early as during infancy. As the cerebellum plays a pivotal role in motor and non-motor functions including sensorimotor processing and learning, we examined cerebellar behavior in humanized SCD mice using the Erasmus ladder.
View Article and Find Full Text PDFThe hypothesis of decreased nitric oxide (NO) bioavailability in sickle cell disease (SCD) proposes that multiple factors leading to decreased NO production and increased consumption contributes to vaso-occlusion, pulmonary hypertension, and pain. The anion nitrite is central to NO physiology as it is an end product of NO metabolism and serves as a reservoir for NO formation. However, there is little data on nitrite levels in SCD patients and its relationship to pain phenotype.
View Article and Find Full Text PDFThe brains of those with Alzheimer's disease have amyloid and tau pathology; thus, mice modeling AD should have both markers. In this study, we characterize offspring from the cross of the J20 (hAPP) and rTg4510 (htau) strains (referred to as dual Tg). Behavior was assessed at both 3.
View Article and Find Full Text PDFCircadian rhythms are altered in several diseases associated with aging, one of which is Alzheimer's disease (AD). One example of a circadian rhythm is the rest-activity cycle, which can be measured in mice by monitoring their wheel-running. The present study sought to investigate differences in light phase/dark phase activity between a mouse model of late onset AD (APP/E4) and control (C57Bl6J) mice, in both the pre-plaque and post-plaques stages of the disease.
View Article and Find Full Text PDF