Increased food intake and lack of physical activity results in excess energy stored in adipocytes, and this imbalance contributes to obesity. New adipocytes are required for storage of energy in the white adipose tissue. This process of adipogenesis is widely studied in differentiating 3T3L1 preadipocytes in vitro.
View Article and Find Full Text PDFPhiladelphia chromosome-negative myeloproliferative neoplasms, including polycythemia vera, essential thrombocytosis, and myelofibrosis, are disorders characterized by abnormal hematopoiesis. Among these myeloproliferative neoplasms, myelofibrosis has the most unfavorable prognosis. Furthermore, currently available therapies for myelofibrosis have little to no efficacy in the bone marrow and hence, are palliative.
View Article and Find Full Text PDFIn this study, we analyzed the structure-activity relationship properties of the small molecule Jak2 inhibitor G6. We synthesized a set of derivatives containing the native para-hydroxyl structure or an alternative meta-hydroxyl structure and examined their Jak2 inhibitory properties. We found that the para-hydroxyl derivative known as NB15 had excellent Jak2 inhibitory properties in silico, in vitro, and ex vivo when compared with meta-hydroxyl derivatives.
View Article and Find Full Text PDFWe recently developed a Janus kinase 2 (Jak2) small-molecule inhibitor called G6 and found that it inhibits Jak2-V617F-mediated pathologic cell growth in vitro, ex vivo, and in vivo. However, its ability to inhibit Jak2-V617F-mediated myeloproliferative neoplasia, with particular emphasis in the bone marrow, has not previously been examined. Here, we investigated the efficacy of G6 in a transgenic mouse model of Jak2-V617F-mediated myeloproliferative neoplasia.
View Article and Find Full Text PDFUsing structure-based virtual screening, we previously identified a novel stilbenoid inhibitor of Jak2 tyrosine kinase named G6. Here, we hypothesized that G6 suppresses Jak2-V617F-mediated human pathological cell growth in vitro and in vivo. We found that G6 inhibited proliferation of the Jak2-V617F expressing human erythroleukemia (HEL) cell line by promoting marked cell cycle arrest and inducing apoptosis.
View Article and Find Full Text PDFJanus kinase 2 (JAK2) plays a crucial role in the pathomechanism of myeloproliferative disorders and hematologic malignancies. A somatic mutation of JAK2 (Val617Phe) was previously shown to occur in 98% of patients with polycythemia vera and 50% of patients with essential thrombocythemia and primary myelofibrosis. Thus, effective JAK2 kinase inhibitors may be of significant therapeutic importance.
View Article and Find Full Text PDF