Cellular secretory products have infinite potential, which is only recently explored for research and therapeutic applications. The present study elaborated on the formation of a unique matrix-entrapped cellular secretome (MCS), a hydrogel-like secretome produced by bone marrow-derived mononuclear cells when cultured on a three-dimensional electrospun nanofiber matrix under specific conditions. These culture conditions support the growth of a mixed population predominantly comprising of endothelial precursor cells (EPCs), along with mesenchymal stromal cells and pericytes.
View Article and Find Full Text PDFDiabetes mellitus (DM) causes dysfunction of endothelial progenitor cells (EPCs), resulting in impaired wound healing. EPC therapy is a potential substitute to the current treatments of chronic wounds. Because EPCs isolated from diabetic patients are dysfunctional and therefore pose an obstacle in their efficacious employment in autologous cell therapy, a strategy to rescue them prior to transplantation would be expected to improve the efficacy of autologous cell therapy multifold.
View Article and Find Full Text PDFDiabetes mellitus (DM)-induced endothelial progenitor cell (EPC) dysfunction causes impaired wound healing, which can be rescued by delivery of large numbers of 'normal' EPCs onto such wounds. The principal challenges herein are (a) the high number of EPCs required and (b) their sustained delivery onto the wounds. Most of the currently available scaffolds either serve as passive devices for cellular delivery or allow adherence and proliferation, but not both.
View Article and Find Full Text PDFLimited recovery of islets post-cryopreservation influences graft survival and transplantation efficiency during diabetes treatment. As curcumin, a potent antioxidant/radical scavenging compound, protects islets against beta cell toxins, we hypothesized that inclusion of curcumin during cryopreservation or during post-thaw culture or both may rescue islets from cryoinjury. To test the effect of curcumin inclusion on islet recovery murine islets were isolated by the collagenase digestion, cultured for 48 h, cryopreserved using dimethylsulphoxide as cryoprotectant -- with or without curcumin (10 microM) -- and then slow cooled to -40 degrees C before immersing them in liquid nitrogen for 7 days.
View Article and Find Full Text PDFPancreatic islet cell death is the cause of deficient insulin production in diabetes mellitus. Approaches towards prevention of cell death are of prophylactic importance in control and management of hyperglycemia. Generation of oxidative stress is implicated in streptozotocin, a beta cell specific toxin-induced islet cell death.
View Article and Find Full Text PDFReduction in the functional mass of beta-cells is a common denominator in most forms of diabetes. Since the replicative potential of beta-cells is limited, the search for factors that trigger islet neogenesis becomes imperative. Here we tested the hypothesis that regenerating factors for the pancreas are either secreted by or present within the pancreatic milieu itself.
View Article and Find Full Text PDFThe phenomenon of pancreatic regeneration in mammals has been well documented. It has been shown that pancreatic tissue is able to regenerate in several species of mammal after surgical insult. This tissue is also known to have the potential to maintain or increase its beta-cell mass in response to metabolic demands during pregnancy and obesity.
View Article and Find Full Text PDF