Structural DNA nanotechnology enables the fabrication of user-defined DNA origami nanostructures (DNs) for biological applications. However, the role of DN design during cellular interactions and subsequent biodistribution remain poorly understood. Current methods for tracking DN fates in situ, including fluorescent-dye labelling, suffer from low sensitivity and dye-induced artifacts.
View Article and Find Full Text PDFDNA and RNA nanostructures are being investigated as therapeutics, vaccines, and drug delivery systems. These nanostructures can be functionalized with guests ranging from small molecules to proteins with precise spatial and stoichiometric control. This has enabled new strategies to manipulate drug activity and to engineer devices with novel therapeutic functionalities.
View Article and Find Full Text PDFLegionella pneumophila is a deadly bacterial pathogen that has caused numerous Legionnaires' disease outbreaks, where cooling towers were the most common source of exposure. Bacterial culturing is used for L. pneumophila detection, but this method takes approximately 10 days to complete.
View Article and Find Full Text PDFThe engineering of easy-to-use biosensors with ultra-low detection sensitivity remains a major challenge. Herein, we report a simple approach for creating such sensors through the use of an RNA-cleaving DNAzyme (RcD) and a strategy designed to concentrate its cleavage product significantly. The assay uses micron-sized beads loaded with a target-responsive RcD and a paper strip containing a microzone covered with a DNA oligonucleotide capable of capturing the cleavage product of the RcD through Watson-Crick hybridization.
View Article and Find Full Text PDF