Publications by authors named "Meghan Osato"

As a model system, the binding pocket of the L99A mutant of T4 lysozyme has been the subject of numerous computational free energy studies. However, previous studies have failed to fully sample and account for the observed changes in the binding pocket of T4 L99A upon binding of a congeneric ligand series, limiting the accuracy of results. In this work, we resolve the closed, intermediate, and open states for T4 L99A previously reported in experiment in MD and establish definitions for these states based on the dynamics of the system.

View Article and Find Full Text PDF

Obtaining accurate binding free energies from screens has been a long-standing goal for the computational chemistry community. However, accuracy and computational cost are at odds with one another, limiting the utility of methods that perform this type of calculation. Many methods achieve massive scale by explicitly or implicitly assuming that the target protein adopts a single structure, or undergoes limited fluctuations around that structure, to minimize computational cost.

View Article and Find Full Text PDF

Obtaining accurate binding free energies from screens has been a longstanding goal for the computational chemistry community. However, accuracy and computational cost are at odds with one another, limiting the utility of methods that perform this type of calculation. Many methods achieve massive scale by explicitly or implicitly assuming that the target protein adopts a single structure, or undergoes limited fluctuations around that structure, to minimize computational cost.

View Article and Find Full Text PDF

X-ray crystallography is the gold standard to resolve conformational ensembles that are significant for protein function, ligand discovery, and computational methods development. However, relevant conformational states may be missed at common cryogenic (cryo) data-collection temperatures but can be populated at room temperature. To assess the impact of temperature on making structural and computational discoveries, we systematically investigated protein conformational changes in response to temperature and ligand binding in a structural and computational workhorse, the T4 lysozyme L99A cavity.

View Article and Find Full Text PDF

Part of early stage drug discovery involves determining how molecules may bind to the target protein. Through understanding where and how molecules bind, chemists can begin to build ideas on how to design improvements to increase binding affinities. In this retrospective study, we compare how computational approaches like docking, molecular dynamics (MD) simulations, and a non-equilibrium candidate Monte Carlo (NCMC)-based method (NCMC + MD) perform in predicting binding modes for a set of 12 fragment-like molecules, which bind to soluble epoxide hydrolase.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7ah9ohmlhhp1bilco5hsp69o2j8g2pu6): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once