We designed and optimized ultra-thin single junction InAlGaAs photonic power converters (PPC) with integrated back reflectors (BR) for operation at the telecommunications wavelength of 1310 nm and numerically studied the light trapping capability of three BR types: planar, cubic nano-textured, and pyramidal nano-textured. The PPC and BR geometries were optimized to absorb a fixed percentage of the incident light at the target wavelength by coupling finite difference time-domain (FDTD) calculations with a particle swarm optimization. With 90% absorptance, opto-electrical simulations revealed that ultra-thin PPCs with 5.
View Article and Find Full Text PDFGermanium-based nanostructures have attracted increasing attention due to favourable electrical and optical properties, which are tunable on the nanoscale. High densities of germanium nanocrystals are synthesized via electrochemical etching, making porous germanium an appealing nanostructured material for a variety of applications. In this work, we have demonstrated highly tunable electrical conductivity in mesoporous germanium layers by conducting a systematic study varying crystallite size using thermal annealing, with experimental conductivities ranging from 0.
View Article and Find Full Text PDF