Publications by authors named "Meghan M Capeling"

Epithelial organoids derived from intestinal tissue, called enteroids, recapitulate many aspects of the organ in vitro and can be used for biological discovery, personalized medicine, and drug development. Here, we interrogated the cell signaling environment within the developing human intestine to identify niche cues that may be important for epithelial development and homeostasis. We identified an EGF family member, EPIREGULIN (EREG), which is robustly expressed in the developing human crypt.

View Article and Find Full Text PDF

Background & Aims: Drug-induced liver injury (DILI), both intrinsic and idiosyncratic, causes frequent morbidity, mortality, clinical trial failures and post-approval withdrawal. This suggests an unmet need for improved in vitro models for DILI risk prediction that can account for diverse host genetics and other clinical factors. In this study, we evaluated the utility of human liver organoids (HLOs) for high-throughput DILI risk prediction and in an organ-on-chip system.

View Article and Find Full Text PDF

Complex three-dimensional in vitro organ-like models, or organoids, offer a unique biological tool with distinct advantages over two-dimensional cell culture systems, which can be too simplistic, and animal models, which can be too complex and may fail to recapitulate human physiology and pathology. Significant progress has been made in driving stem cells to differentiate into different organoid types, though several challenges remain. For example, many organoid models suffer from high heterogeneity, and it can be difficult to fully incorporate the complexity of in vivo tissue and organ development to faithfully reproduce human biology.

View Article and Find Full Text PDF

NOTCH signaling is a key regulator involved in maintaining intestinal stem cell (ISC) homeostasis and for balancing differentiation. Using single-cell transcriptomics, we observed that OLFM4, a NOTCH target gene present in ISCs, is first expressed at 13 weeks post-conception in the developing human intestine and increases over time. This led us to hypothesize that the requirement for NOTCH signaling is acquired across human development.

View Article and Find Full Text PDF

Pluripotent-stem-cell-derived human intestinal organoids (HIOs) model some aspects of intestinal development and disease, but current culture methods do not fully recapitulate the diverse cell types and complex organization of the human intestine and are reliant on 3D extracellular matrix or hydrogel systems, which limit experimental control and translational potential for regenerative medicine. We describe suspension culture as a simple, low-maintenance method for culturing HIOs and for promoting in vitro differentiation of an organized serosal mesothelial layer that is similar to primary human intestinal serosal mesothelium based on single-cell RNA sequencing and histological analysis. Functionally, HIO serosal mesothelium has the capacity to differentiate into smooth-muscle-like cells and exhibits fibrinolytic activity.

View Article and Find Full Text PDF

Organs are composed of diverse cell types that traverse transient states during organogenesis. To interrogate this diversity during human development, we generate a single-cell transcriptome atlas from multiple developing endodermal organs of the respiratory and gastrointestinal tract. We illuminate cell states, transcription factors, and organ-specific epithelial stem cell and mesenchyme interactions across lineages.

View Article and Find Full Text PDF

Human pluripotent stem cell (hPSC)-derived intestinal organoids (HIOs) lack some cellular populations found in the native organ, including vasculature. Using single-cell RNA sequencing (scRNA-seq), we have identified a population of endothelial cells (ECs) present early in HIO differentiation that declines over time in culture. Here, we developed a method to expand and maintain this endogenous population of ECs within HIOs (vHIOs).

View Article and Find Full Text PDF

Organoids are complex three-dimensional organ-like model systems. Human organoids, which are derived from human pluripotent stem cells or primary human donor tissue, have been used to address fundamental questions about human development, stem cell biology and organ regeneration. Focus has now shifted towards implementation of organoids for biological discovery and advancing existing systems to more faithfully recapitulate the native organ.

View Article and Find Full Text PDF

Human intestinal organoids (HIOs) represent a powerful system to study human development and are promising candidates for clinical translation as drug-screening tools or engineered tissue. Experimental control and clinical use of HIOs is limited by growth in expensive and poorly defined tumor-cell-derived extracellular matrices, prompting investigation of synthetic ECM-mimetics for HIO culture. Since HIOs possess an inner epithelium and outer mesenchyme, we hypothesized that adhesive cues provided by the matrix may be dispensable for HIO culture.

View Article and Find Full Text PDF