The reactivity of individual solvent-coupled protein configurations is used to track and resolve the progress coordinate for the core reaction sequence of substrate radical rearrangement and hydrogen atom transfer in the ethanolamine ammonia-lyase (EAL) enzyme from . The first-order decay of the substrate radical intermediate is the monitored reaction. Heterogeneous confinement from sucrose hydrates in the mesophase solvent surrounding the cryotrapped protein introduces distributed kinetics in the non-native decay of the substrate radical pair capture substate, which arise from an ensemble of configurational microstates.
View Article and Find Full Text PDFCoenzyme B (adenosylcobalamin) -dependent ethanolamine ammonia-lyase (EAL) is the signature enzyme in ethanolamine utilization metabolism associated with microbiome homeostasis and disease conditions in the human gut. The enzyme conducts a complex choreography of bond-making/bond-breaking steps that rearrange substrate to products through a radical mechanism, with themes common to other coenzyme B-dependent and radical enzymes. The methods presented are targeted to test the hypothesis that particular, select protein and coupled solvent configurational fluctuations contribute to enzyme function.
View Article and Find Full Text PDFThe first-order reaction kinetics of the cryotrapped 1,1,2,2-H-aminoethanol substrate radical intermediate state in the adenosylcobalamin (B)-dependent ethanolamine ammonia-lyase (EAL) from serovar Typhimurium are measured over the range of 203-225 K by using time-resolved, full-spectrum electron paramagnetic resonance spectroscopy. The studies target the fundamental understanding of the mechanism of EAL, the signature enzyme in ethanolamine utilization metabolism associated with microbiome homeostasis and disease conditions in the human gut. Incorporation of H into the hydrogen transfer that follows the substrate radical rearrangement step in the substrate radical decay reaction sequence leads to an observed H/H isotope effect of approximately 2 that preserves, with high fidelity, the idiosyncratic piecewise pattern of rate constant versus inverse temperature dependence that was previously reported for the H-labeled substrate, including a monoexponential regime ( ≥ 220 K) and two distinct biexponential regimes ( = 203-219 K).
View Article and Find Full Text PDFUsing experiments and simulations, we study the flow of soft particles through quasi-two-dimensional hoppers. The first experiment uses oil-in-water emulsion droplets in a thin sample chamber. Due to surfactants coating the droplets, they easily slide past each other, approximating soft frictionless disks.
View Article and Find Full Text PDFThe kinetics of the substrate radical rearrangement reaction step in B-dependent ethanolamine ammonia-lyase (EAL) from Salmonella typhimurium are measured over a 92 K temperature range. The observed first-order rate constants display a piecewise-continuous Arrhenius dependence, with linear regions over 295 → 220 K (monoexponential) and 214 → 203 K (biexponential) that are delineated by a kinetic bifurcation and kinks at 219 and 217 K, respectively. The results are interpreted by using a free energy landscape model and derived microscopic kinetic mechanism.
View Article and Find Full Text PDFApproaches to the resolution and characterization of individual chemical steps in enzyme catalytic sequences, by using temperatures in the cryogenic range of 190-250 K, and kinetics measured by time-resolved, full-spectrum electron paramagnetic resonance spectroscopy in fluid cryosolvent and frozen solution systems, are described. The preparation and performance of the adenosylcobalamin-dependent ethanolamine ammonia-lyase enzyme from Salmonella typhimurium in the two systems exemplifies the biochemical and spectroscopic methods. General advantages of low-temperature studies are (1) slowing of reaction steps, so that measurements can be made by using straightforward T-step kinetic methods and commercial instrumentation, (2) resolution of individual reaction steps, so that first-order kinetic analysis can be applied, and (3) accumulation of intermediates that are not detectable at room temperatures.
View Article and Find Full Text PDFAnalysis of rodent brains with X-ray fluorescence (XRF) microscopy combined with immunohistochemistry allowed us to demonstrate that local Cu concentrations are thousands of times higher in the glia of the subventricular zone (SVZ) than in other cells. Using XRF microscopy with subcellular resolution and intracellular X-ray absorption spectroscopy we determined the copper (I) oxidation state and the sulfur ligand environment. Cu K-edge X-ray absorption near edge spectroscopy is consistent with Cu being bound as a multimetallic Cu-S cluster similar to one present in Cu-metallothionein.
View Article and Find Full Text PDF