Publications by authors named "Meghan Gage"

Article Synopsis
  • - Epilepsy and Alzheimer's disease exhibit shared neurodegenerative features, including seizures and cognitive decline; however, the underlying molecular mechanisms are not fully understood.
  • - The study highlights the significant increase in Fyn-tau interactions following seizure induction, indicating potential therapeutic targets for modifying brain pathology in both conditions.
  • - Findings suggest that inhibiting Fyn via saracatinib can reduce pathological interactions and phosphorylation in models of epilepsy, pointing to promising avenues for treatment in human cases.
View Article and Find Full Text PDF

Background: Acute exposure to seizurogenic organophosphate (OP) nerve agents (OPNA) such as diisopropylfluorophosphate (DFP) or soman (GD), at high concentrations, induce immediate status epilepticus (SE), reactive gliosis, neurodegeneration, and epileptogenesis as a consequence. Medical countermeasures (MCMs-atropine, oximes, benzodiazepines), if administered in < 20 min of OPNA exposure, can control acute symptoms and mortality. However, MCMs alone are inadequate to prevent OPNA-induced brain injury and behavioral dysfunction in survivors.

View Article and Find Full Text PDF

Organophosphates (OP) are highly toxic chemical nerve agents that have been used in chemical warfare. Currently, there are no effective medical countermeasures (MCMs) that mitigate the chronic effects of OP exposure. Oxidative stress is a key mechanism underlying OP-induced cell death and inflammation in the peripheral and central nervous systems and is not mitigated by the available MCMs.

View Article and Find Full Text PDF

Acute exposure to seizurogenic organophosphate (OP) nerve agents (OPNA) such as diisopropylfluorophosphate (DFP) or soman (GD), at high concentrations, induce immediate (SE), reactive gliosis, neurodegeneration, and epileptogenesis as a consequence. Medical countermeasures (MCMs- atropine, oximes, benzodiazepines), if administered in < 20 minutes of OPNA exposure, can control acute symptoms and mortality. However, MCMs alone are inadequate to prevent OPNA-induced brain injury and behavioral dysfunction in survivors.

View Article and Find Full Text PDF

Organophosphate nerve agent (OPNA) exposure induces acute and long-term neurological deficits. OPNA exposure at sub-lethal concentrations induces irreversible inhibition of acetylcholinesterase and cholinergic toxidrome and develops (SE). Persistent seizures have been associated with increased production of ROS/RNS, neuroinflammation, and neurodegeneration.

View Article and Find Full Text PDF

Objective: Exposure to the nerve agent, soman (GD), induces status epilepticus (SE), epileptogenesis, and even death. Although rodent models studying the pathophysiological mechanisms show females to be more reactive to soman, no tangible sex differences in brains postexposure have been reported. In this study, we used multimodal imaging using MRI in adult rats to determine potential sex-based biomarkers of soman effects.

View Article and Find Full Text PDF

Sex is a biological variable in experimental models. In our previous diisopropylfluorophosphate (DFP) studies, female rats required a higher dose of DFP to achieve a somewhat similar severity of status epilepticus (SE) as males. In those studies, male and female rats were bought separately from the same vendor, housed in different rooms, and the DFP used was from different batches.

View Article and Find Full Text PDF

Glial scars have been observed following stab lesions in the spinal cord and brain but not observed and characterized in chemoconvulsant-induced epilepsy models. Epilepsy is a disorder characterized by spontaneous recurrent seizures and can be modeled in rodents. Diisopropylfluorophosphate (DFP) exposure, like other real-world organophosphate nerve agents (OPNAs) used in chemical warfare scenarios, can lead to the development of (SE).

View Article and Find Full Text PDF

Modeling a real-world scenario of organophosphate nerve agent (OPNA) exposure is challenging. Military personnel are premedicated with pyridostigmine, which led to the development of OPNA models with pyridostigmine/oxime pretreatment to investigate novel therapeutics for acute and chronic effects. However, civilians are not premedicated with pyridostigmine/oxime.

View Article and Find Full Text PDF

Diisopropylfluorophosphate (DFP), an organophosphate nerve agent (OPNA), exposure causes status epilepticus (SE) and epileptogenesis. In this study, we tested the protective effects of saracatinib (AZD0530), a Src kinase inhibitor, in mixed-sex or male-only Sprague Dawley rats exposed to 4-5 mg/kg DFP followed by 2 mg/kg atropine and 25 mg/kg 2-pralidoxime. Midazolam (3 mg/kg) was given to the mixed-sex cohort (1 h post-DFP) and male-only cohort (~30 min post-DFP).

View Article and Find Full Text PDF

Organophosphate nerve agents (OPNAs) act as irreversible inhibitors of acetylcholinesterase and can lead to cholinergic crisis including salivation, lacrimation, urination, defecation, gastrointestinal distress, respiratory distress, and seizures. Although the OPNAs have been studied in the past few decades, little is known about the impact on the gut microbiome which has become of increasing interest across fields. In this study, we challenged animals with the OPNA, diisopropylfluorophosphate (DFP, 4mg/kg, s.

View Article and Find Full Text PDF

Acute organophosphate (OP) toxicity poses a significant threat to both military and civilian personnel as it can lead to a variety of cholinergic symptoms including the development of (SE). Depending on its severity, SE can lead to a spectrum of neurological changes including neuroinflammation and neurodegeneration. In this study, we determined the impact of SE severity and duration on disease promoting parameters such as gliosis and neurodegeneration and the efficacy of a disease modifier, saracatinib (AZD0530), a Src/Fyn tyrosine kinase inhibitor.

View Article and Find Full Text PDF

Neurological diseases share common neuroinflammatory and oxidative stress pathways. Both phenotypic and molecular changes in microglia, astrocytes, and neurons contribute to the progression of disease and present potential targets for disease modification. Src family kinases (SFKs) are present in both neurons and glial cells and are upregulated following neurological insults in both human and animal models.

View Article and Find Full Text PDF

Sex differences in response to neurotoxicant exposure that initiates epileptogenesis are understudied. We used telemetry-implanted male and female adult rats exposed to an organophosphate (OP) neurotoxicant, diisopropylflourophosphate (DFP), to test sex differences in the severity of status epilepticus (SE) and the development of spontaneous recurrent seizures (SRS). Females had significantly less severe SE and decreased epileptiform spikes compared with males, although females received a higher dose of DFP than males.

View Article and Find Full Text PDF

Organophosphate (OP) nerve agents are a threat to both the military and civilians. OP exposure causes cholinergic crisis and status epilepticus (SE) because of irreversible inhibition of acetylcholinesterase that can be life-threatening if left untreated. OP survivors develop long-term morbidity, such as cognitive impairment and motor dysfunction, because of oxidative stress and progressive neuroinflammation and neurodegeneration, which act as disease promoters.

View Article and Find Full Text PDF

Chemical nerve agents (CNA) are increasingly becoming a threat to both civilians and military personnel. CNA-induced acute effects on the nervous system have been known for some time and the long-term consequences are beginning to emerge. In this study, we used diisopropylfluorophosphate (DFP), a seizurogenic CNA to investigate the long-term impact of its acute exposure on the brain and its mitigation by an inducible nitric oxide synthase (iNOS) inhibitor, 1400W as a neuroprotectant in the rat model.

View Article and Find Full Text PDF