Ecosystems often show differential sensitivity to chronic nitrogen (N) deposition; hence, a critical challenge is to improve our understanding of how and why site-specific factors mediate biogeochemical responses to N enrichment. We examined the extent to which N impacts on soil carbon (C) and N dynamics depend on microbial resource stoichiometry. We added N to forest plots dominated by ectomycorrhizal (ECM) trees, which have litter and soil pools rich in organic N and relatively wide C:N ratios, and adjacent forest plots dominated by arbuscular mycorrhizal (AM) trees, which have litter and soil pools rich in inorganic N and relatively narrow C:N ratios.
View Article and Find Full Text PDFAlthough much is known about how trees and their associated microbes influence nitrogen cycling in temperate forest soils, less is known about biotic controls over phosphorus (P) cycling. Given that mycorrhizal fungi are instrumental for P acquisition and that the two dominant associations - arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi - possess different strategies for acquiring P, we hypothesized that P cycling would differ in stands dominated by trees associated with AM vs ECM fungi. We quantified soil solution P, microbial biomass P, and sequentially extracted inorganic and organic P pools from May to November in plots dominated by trees forming either AM or ECM associations in south-central Indiana, USA.
View Article and Find Full Text PDFUnderstanding the context dependence of ecosystem responses to global changes requires the development of new conceptual frameworks. Here we propose a framework for considering how tree species and their mycorrhizal associates differentially couple carbon (C) and nutrient cycles in temperate forests. Given that tree species predominantly associate with a single type of mycorrhizal fungi (arbuscular mycorrhizal (AM) fungi or ectomycorrhizal (ECM) fungi), and that the two types of fungi differ in their modes of nutrient acquisition, we hypothesize that the abundance of AM and ECM trees in a plot, stand, or region may provide an integrated index of biogeochemical transformations relevant to C cycling and nutrient retention.
View Article and Find Full Text PDF