Publications by authors named "Meghan E Faillace"

Osteoporosis is a skeletal disorder that is characterized by the loss of bone mineral density (BMD) resulting in increased risk of fracture. However, it has been shown that BMD is not the only indicator of fracture risk, as the strength of bone depends on a number of factors, including bone mass, architecture and material properties. Physiological mineral deposition requires the formation of a properly developed extracellular matrix (ECM), which recruits calcium and phosphate ions into the synthesis of apatite crystals.

View Article and Find Full Text PDF

Functional adaptation may complicate the choice of phenotype used in genetic studies that seek to identify genes contributing to fracture susceptibility. Often, genetic variants affecting one trait are compensated by coordinated changes in other traits. Bone fracture is a prototypic example because mechanical function of long bones (stiffness and strength) depends on how the system coordinately adjusts the amount (cortical area) and quality (tissue-mineral density, TMD) of bone tissue to mechanically offset the natural variation in bone robustness (total area/length).

View Article and Find Full Text PDF

Mineralizing osteoblasts are regularly used to study osteogenesis and model in vivo bone formation. Thus, it is important to verify that the mineral and matrix being formed in situ are comparable to those found in vivo. However, it has been shown that histochemical techniques alone are not sufficient for identifying calcium phosphate-containing mineral.

View Article and Find Full Text PDF

Deletion of connexin (Cx) 43 from osteoblasts and osteocytes (OCN-Cre;Cx43(fl/-) mice) or from osteocytes only (DMP1-8kb-Cre;Cx43(fl/fl) mice) results in increased cortical, but not cancellous, osteocyte apoptosis and widening of the femoral midshaft without changes in cortical thickness. Despite the consequent larger moment of inertia, stiffness and ultimate load, measures of mechanical strength assessed by three-point bending, are not higher in either model of Cx43 deficiency due to reduced Young's modulus, a measure of the stiffness of the material per unit of area. In OCN-Cre;Cx43(fl/-) mice, this was accompanied by a reduced ratio of nonreducible/reducible collagen cross-links as assessed by Fourier transformed infrared imaging (FTIRI) in the femoral diaphysis.

View Article and Find Full Text PDF

Bisphosphonates function to reduce bone turnover, which consequently increases the mean degree of tissue mineralization at an organ level. However, it is not clear if bisphosphonates alter the length of time required for an individual bone-modeling unit (BMU) to fully mineralize. We have recently demonstrated that it takes ~350 days (d) for normal, untreated cortical bone to fully mineralize.

View Article and Find Full Text PDF