Publications by authors named "Meghan Breen"

Natural products are often uniquely suited to modulate protein-protein interactions (PPIs) due to their architectural and functional group complexity relative to synthetic molecules. Here we demonstrate that the natural product garcinolic acid allosterically blocks the CBP/p300 KIX PPI network and displays excellent selectivity over related GACKIX motifs. It does so via a strong interaction (K 1 μM) with a non-canonical binding site containing a structurally dynamic loop in CBP/p300 KIX.

View Article and Find Full Text PDF

The photoactivatable amino acid p-benzoyl-l-phenylalanine (pBpa) has been used for the covalent capture of protein-protein interactions (PPIs) in vitro and in living cells. However, this technique often suffers from poor photocrosslinking yields due to the low reactivity of the active species. Here we demonstrate that the incorporation of halogenated pBpa analogs into proteins leads to increased crosslinking yields for protein-protein interactions.

View Article and Find Full Text PDF

Antimicrobial functionality is introduced into a pharmaceutical formulation of miconazole while improving solubility. The work leverages hydrate formation propensity in order to produce hydrogen peroxide solvates. The ubiquity of hydrate formation suggests that hydrogen peroxide can be broadly deployed in pharmaceuticals, rendering a liquid excipient suitable for solid pharmaceutical formulations.

View Article and Find Full Text PDF

Dysregulation of transcription is found in nearly every human disease, and as a result there has been intense interest in developing new therapeutics that target regulators of transcription. CREB binding protein (CBP) and its paralogue p300 are attractive targets due to their function as `master coactivators'. Although inhibitors of several CBP/p300 domains have been identified, the selectivity of many of these compounds has remained underexplored.

View Article and Find Full Text PDF

In vivo covalent chemical capture by using photoactivatable unnatural amino acids (UAAs) is a powerful tool for the identification of transient protein-protein interactions (PPIs) in their native environment. However, the isolation and characterization of the crosslinked complexes can be challenging. Here, we report the first in vivo incorporation of the bifunctional UAA BPKyne for the capture and direct labeling of crosslinked protein complexes through post-crosslinking functionalization of a bioorthogonal alkyne handle.

View Article and Find Full Text PDF

We have developed a modular approach to bisubstrate inhibition of protein kinases. We apply our methodology to c-Src and identify a highly selective bisubstrate inhibitor for this target. Our approach has yielded the most selective c-Src inhibitor to date, and the methodology to render the bisubstrate inhibitor cell-permeable provides a highly valuable tool for the study of c-Src signaling.

View Article and Find Full Text PDF

Protein kinases are important mediators of cellular communication and attractive drug targets for many diseases. Although success has been achieved with developing ATP-competitive kinase inhibitors, the disadvantages of ATP-competitive inhibitors have led to increased interest in targeting sites outside of the ATP binding pocket. Kinase inhibitors with substrate-competitive, ATP-noncompetitive binding modes are promising due to the possibility of increased selectivity and better agreement between biochemical and in vitro potency.

View Article and Find Full Text PDF

Substrate-competitive kinase inhibitors represent a promising class of kinase inhibitors, however, there is no methodology to selectively identify this type of inhibitor. Substrate activity screening was applied to tyrosine kinases. By using this methodology, the first small-molecule substrates for any protein kinase were discovered, as well as the first substrate-competitive inhibitors of c-Src with activity in both biochemical and cellular assays.

View Article and Find Full Text PDF

Sarcocystis neurona is the most common cause of Equine Protozoal Myeloencephalitis (EPM), affecting 0.5-1% horses in the United States during their lifetimes. The objective of this study was to evaluate the equine immune responses in an experimentally induced Sarcocystis neurona infection model.

View Article and Find Full Text PDF

Resistance to antibiotics is an increasingly dire threat to human health that warrants the development of new modes of treating infection. We recently identified 1 (CCG-2979) as an inhibitor of the expression of streptokinase, a critical virulence factor in Group A Streptococcus that endows blood-borne bacteria with fibrinolytic capabilities. In this report, we describe the synthesis and biological evaluation of a series of novel 5,6-dihydrobenzo[h]quinazolin-4(3H)-one analogs of 1 undertaken with the goal of improving the modest potency of the lead.

View Article and Find Full Text PDF

Rationally designed racemic and quasiracemic sulfonamidecinnamic acids assemble to give hydrogen-bonded dimers with coplanar alignment of neighboring olefins. The quasiracemate phase contains near inversion-related motifs with chemically distinct components forming supramolecular heterodimers that undergo asymmetric photodimerization.

View Article and Find Full Text PDF

(E)-5-Nitro-6-(2-hydroxystyryl)pyrimidine-2,4(1H,3H)-dione (9) was identified as a novel inhibitor of Schizosaccharomyces pombe lumazine synthase by high-throughput screening of a 100000 compound library. The K(i) of 9 vs Mycobacterium tuberculosis lumazine synthase was 95 microM. Compound 9 is a structural analogue of the lumazine synthase substrate 5-amino-6-(d-ribitylamino)-2,4-(1H,3H)pyrimidinedione (1).

View Article and Find Full Text PDF