Publications by authors named "Meghan Bliss-Moreau"

Adult T-cell leukemia/lymphoma (ATLL) is a mature T-cell lymphoproliferative disorder associated with the human T lymphotropic virus (HTLV-1) infection. ATLL predominantly affects individuals within HTLV-1 endemic areas such as Japan, areas of Africa, South America, and the Caribbean. HTLV-1 preferentially infects CD4+ T-cells, and several genetic hits must occur before ATLL develops.

View Article and Find Full Text PDF

Ptpn6 is a cytoplasmic phosphatase that functions to prevent autoimmune and interleukin-1 (IL-1) receptor-dependent, caspase-1-independent inflammatory disease. Conditional deletion of Ptpn6 in neutrophils (Ptpn6) is sufficient to initiate IL-1 receptor-dependent cutaneous inflammatory disease, but the source of IL-1 and the mechanisms behind IL-1 release remain unclear. Here, we investigate the mechanisms controlling IL-1α/β release from neutrophils by inhibiting caspase-8-dependent apoptosis and Ripk1-Ripk3-Mlkl-regulated necroptosis.

View Article and Find Full Text PDF
Article Synopsis
  • Genetic modification using CRISPR-Cas9 in human leukemic cell lines is widely used for studying gene function, but this approach assumes minimal genetic drift and experimental variability among derived clones.
  • A study of clonal human leukemia T-cell lines revealed significant variability in sensitivity to chemotherapy, indicating that editing methods and genetic instability can influence cell death responses.
  • Whole genome sequencing of clonal lines showed both unique and shared genetic variants; the results emphasize the need to consider genetic variation when designing experiments to analyze gene function post-cloning.
View Article and Find Full Text PDF

Neutrophil extracellular trap (NET) formation can generate short-term, functional anucleate cytoplasts and trigger loss of cell viability. We demonstrated that the necroptotic cell death effector mixed lineage kinase domain-like (MLKL) translocated from the cytoplasm to the plasma membrane and stimulated downstream NADPH oxidase-independent ROS production, loss of cytoplasmic granules, breakdown of the nuclear membrane, chromatin decondensation, histone hypercitrullination, and extrusion of bacteriostatic NETs. This process was coordinated by receptor-interacting protein kinase-1 (RIPK1), which activated the caspase-8-dependent apoptotic or RIPK3/MLKL-dependent necroptotic death of mouse and human neutrophils.

View Article and Find Full Text PDF

Immunological responses activated by pathogen recognition come in many guises. The proliferation, differentiation and recruitment of immune cells, and the production of inflammatory cytokines and chemokines are central to lifelong immunity. Cell death serves as a key function in the resolution of innate and adaptive immune responses.

View Article and Find Full Text PDF

The mammalian target of rapamycin (mTOR) and phosphoinositide-3-kinase (PI3K) pathways are often aberrantly activated in acute myeloid leukemia (AML) and play critical roles in proliferation and survival of leukemia cells. We provide evidence that simultaneous targeting of mTOR complexes with the catalytic mTOR inhibitor OSI-027 and of the p110α subunit of PI3K with the specific inhibitor BYL-719 results in efficient suppression of effector pathways and enhanced induction of apoptosis of leukemia cells. Importantly, such a combined targeting approach results in enhanced suppression of primitive leukemic progenitors from patients with AML.

View Article and Find Full Text PDF

Cutaneous T-cell lymphomas (CTCLs) represent a group of hematopoietic malignancies that home to the skin and have no known molecular basis for disease pathogenesis. Sézary syndrome (SS) is the leukemic variant of CTCL. Currently, CTCL is incurable, highlighting the need for new therapeutic modalities.

View Article and Find Full Text PDF

The mechanism by which cells decide to skip mitosis to become polyploid is largely undefined. Here we used a high-content image-based screen to identify small-molecule probes that induce polyploidization of megakaryocytic leukemia cells and serve as perturbagens to help understand this process. Our study implicates five networks of kinases that regulate the switch to polyploidy.

View Article and Find Full Text PDF

Individuals with Down syndrome (DS; also known as trisomy 21) have a markedly increased risk of leukemia in childhood but a decreased risk of solid tumors in adulthood. Acquired mutations in the transcription factor-encoding GATA1 gene are observed in nearly all individuals with DS who are born with transient myeloproliferative disorder (TMD), a clonal preleukemia, and/or who develop acute megakaryoblastic leukemia (AMKL). Individuals who do not have DS but bear germline GATA1 mutations analogous to those detected in individuals with TMD and DS-AMKL are not predisposed to leukemia.

View Article and Find Full Text PDF