Publications by authors named "Meghan A Hartwick"

The confluence of growing analytic capacities and global surveillance systems for seasonal infections has created new opportunities to further develop statistical methodology and advance the understanding of the global disease dynamics. We developed a framework to characterise the seasonality of infectious diseases for publicly available global health surveillance data. Specifically, we aimed to estimate the seasonal characteristics and their uncertainty using mixed effects models with harmonic components and the δ-method and develop multi-panel visualisations to present complex interplay of seasonal peaks across geographic locations.

View Article and Find Full Text PDF

Widespread destruction from the Yemeni Civil War (2014-present) triggered the world's largest cholera outbreak. We compiled a comprehensive health dataset and created dynamic maps to demonstrate spatiotemporal changes in cholera infections and war conflicts. We aligned and merged daily, weekly, and monthly epidemiological bulletins of confirmed cholera infections and daily conflict events and fatality records to create a dataset of weekly time series for Yemen at the governorate level (subnational regions administered by governors) from 4 January 2016 through 29 December 2019.

View Article and Find Full Text PDF

The Global Task Force on Cholera Control (GTFCC) created a strategy for early outbreak detection, hotspot identification, and resource mobilization coordination in response to the Yemeni cholera epidemic. This strategy requires a systematic approach for defining and classifying outbreak signatures, or the profile of an epidemic curve and its features. We used publicly available data to quantify outbreak features of the ongoing cholera epidemic in Yemen and clustered governorates using an adaptive time series methodology.

View Article and Find Full Text PDF

Microbial ecology studies have proven to be important resources for improving infectious disease response and outbreak prevention. Vibrio parahaemolyticus is an ongoing source of shellfish-borne food illness in the Northeast United States, and there is keen interest in understanding the environmental conditions that coincide with V. parahaemolyticus disease risk, in order to aid harvest management and prevent further illness.

View Article and Find Full Text PDF

For several decades, the World Health Organization has collected, maintained, and distributed invaluable country-specific disease surveillance data that allow experts to develop new analytical tools for disease tracking and forecasting. To capture the extent of available data within these sources, we proposed a completeness metric based on the effective time series length. Using FluNet records for 29 Pan-American countries from 2005 to 2019, we explored whether completeness was associated with health expenditure indicators adjusting for surveillance system heterogeneity.

View Article and Find Full Text PDF
Article Synopsis
  • * The study analyzed data from various European and non-European countries from January to May 2020 to evaluate the impact of different NPIs on virus transmission.
  • * Key findings showed that closing educational institutions, limiting gatherings to 10 people or less, and shutting down face-to-face businesses significantly reduced transmission, while stay-at-home orders had a smaller effect.
View Article and Find Full Text PDF

Seafood-borne illness is a global public health issue facing resource managers and the seafood industry. The recent increase in shellfish-borne illnesses in the Northeast United States has resulted in the application of intensive management practices based on a limited understanding of when and where risks are present. We aim to determine the contribution of factors that affect concentrations in oysters () using ten years of surveillance data for environmental and climate conditions in the Great Bay Estuary of New Hampshire from 2007 to 2016.

View Article and Find Full Text PDF

Systematically collected hospitalization records provide valuable insight into disease patterns and support comprehensive national infectious disease surveillance networks. Hospitalization records detailing patient's place of residence (PoR) can be utilized to better understand a hospital's case load and strengthen surveillance among mobile populations. This study examined geographic patterns of patients treated for cholera at a major hospital in south India.

View Article and Find Full Text PDF

Despite availability of high quality medical records, health care systems often do not have the resources or tools to utilize these data efficiently. Yet, hospital-based, laboratory-confirmed records may pave the way for building reliable surveillance systems capable of monitoring temporal trends of emerging infections. In this communication, we present a new tool to compress and visualize medical records with a local population profile (LPP) approach, which transforms information into statistically comparable patterns.

View Article and Find Full Text PDF