Publications by authors named "Megha Vasavada"

Transcranial direct current stimulation (tDCS) can influence performance on behavioral tasks and improve symptoms of brain conditions. Yet, it remains unclear precisely how tDCS affects brain function and connectivity. Here, we measured changes in functional connectivity (FC) metrics in blood-oxygenation-level-dependent (BOLD) fMRI data acquired during MR-compatible tDCS in a whole-brain analysis with corrections for false discovery rate.

View Article and Find Full Text PDF

Background: Ketamine provides rapid antidepressant response in those struggling with major depressive disorder (MDD). This study measured acute changes in brain activity over 24 hours after a single infusion of ketamine using arterial spin labeled (ASL) functional magnetic resonance imaging (fMRI) in patients with MDD. ASL is a novel technique that provides quantitative values to measure cerebral blood flow (CBF).

View Article and Find Full Text PDF

Patients with major depressive disorder (MDD) exhibit impaired control of cognitive and emotional systems, including deficient response selection and inhibition. Though these deficits are typically attributed to abnormal communication between macro-scale cortical networks, altered communication with the cerebellum also plays an important role. Yet, how the circuitry between the cerebellum and large-scale functional networks impact treatment outcome in MDD is not understood.

View Article and Find Full Text PDF

Inflammation plays a role in depression pathophysiology and treatment response, with effects varying by sex and therapeutic modality. Lower levels of interleukin(IL)-8 predict depression response to antidepressant medication and to electroconvulsive therapy (ECT), although ECT effects are specific to females. Whether IL-8 predicts depression response to ketamine and in a sex-specific manner is not known.

View Article and Find Full Text PDF

Background: Subanesthetic ketamine infusion therapy can produce fast-acting antidepressant effects in patients with major depression. How single and repeated ketamine treatment modulates the whole-brain functional connectome to affect clinical outcomes remains uncharacterized.

Methods: Data-driven whole brain functional connectivity (FC) analysis was used to identify the functional connections modified by ketamine treatment in patients with major depressive disorder (MDD).

View Article and Find Full Text PDF

Background: Ketamine is a highly effective antidepressant for patients with treatment-resistant major depressive disorder (MDD). Resting-state functional magnetic resonance imaging studies show disruptions of functional connectivity (FC) between limbic regions and resting-state networks (RSNs) in MDD, including the default mode network, central executive network (CEN), and salience network (SN). Here, we investigated whether serial ketamine treatments change FC between limbic structures and RSNs.

View Article and Find Full Text PDF

Background: Subcallosal cingulate (SCC) activity is associated with treatment response in major depressive disorder (MDD). Using electroconvulsive therapy (ECT) as a treatment model in this exploratory study, we addressed whether pretreatment SCC structural connectivity with corticolimbic-striatal circuitry relates to therapeutic outcome and whether these connectivity patterns change with treatment.

Methods: Diffusion magnetic resonance imaging scans were acquired in 43 patients with MDD (mean [SD] age = 41 [13] years; men/women: 18/25) before and within 1 week of completing an ECT index series and in 31 healthy control subjects scanned twice (mean [SD] age = 38 [11] years; men/women: 17/18).

View Article and Find Full Text PDF

Subanesthetic ketamine is found to induce fast-acting and pronounced antidepressant effects, even in treatment resistant depression (TRD). However, it remains unclear how ketamine modulates neural function at the brain systems-level to regulate emotion and behavior. Here, we examined treatment-related changes in the inhibitory control network after single and repeated ketamine therapy in TRD.

View Article and Find Full Text PDF

Females suffer from depression at twice the rate of males and have differential neural and emotional responses to inflammation. However, sex-specific evaluation of relationships between inflammation and response to depression treatments are lacking. Some data suggest that interleukin(IL)-8 predicts treatment response to antidepressants and has a relationship with depressive symptom severity.

View Article and Find Full Text PDF

Electroconvulsive therapy (ECT) and ketamine treatment both induce rapidly acting antidepressant effects in patients with major depressive disorder unresponsive to standard treatments, yet their specific impact on emotion processing is unknown. Here, we examined the neural underpinnings of emotion processing within and across patients (N = 44) receiving either ECT (N = 17, mean age: 36.8, 11.

View Article and Find Full Text PDF

Ketamine infusion therapy can produce fast-acting antidepressant effects in patients with major depressive disorder (MDD). Yet, how single and repeated ketamine treatment induces brain systems-level neuroplasticity underlying symptom improvement is unknown. Advanced multiband imaging (MB) pseudo-continuous arterial spin labeling (pCASL) perfusion MRI data was acquired from patients with treatment resistant depression (TRD) (N = 22, mean age=35.

View Article and Find Full Text PDF

Electroconvulsive therapy (ECT) has been repeatedly linked to hippocampal plasticity. However, it remains unclear what role hippocampal plasticity plays in the antidepressant response to ECT. This magnetic resonance imaging (MRI) study tracks changes in separate hippocampal subregions and hippocampal networks in patients with depression (n = 44, 23 female) to determine their relationship, if any, with improvement after ECT.

View Article and Find Full Text PDF

Background: Electroconvulsive therapy (ECT) is an effective treatment for severe depression and is shown to increase hippocampal volume and modulate hippocampal functional connectivity. Whether variations in hippocampal structural connectivity occur with ECT and relate to clinical response is unknown.

Methods: Patients with major depression (n = 36, 20 women, age 41.

View Article and Find Full Text PDF

Background: Converging evidence suggests that electroconvulsive therapy (ECT) induces neuroplasticity in patients with severe depression, though how this relates to antidepressant response is less clear. Arterial spin-labeled functional magnetic resonance imaging tracks absolute changes in cerebral blood flow (CBF) linked with brain function and offers a potentially powerful tool when observing neurofunctional plasticity with functional magnetic resonance imaging.

Methods: Using arterial spin-labeled functional magnetic resonance imaging, we measured global and regional CBF associated with clinically prescribed ECT and therapeutic response in patients (n = 57, 30 female) before ECT, after two treatments, after completing an ECT treatment "index" (∼4 weeks), and after long-term follow-up (6 months).

View Article and Find Full Text PDF

Background: Electroconvulsive therapy (ECT) is arguably the most effective available treatment for severe depression. Recent studies have used MRI data to predict clinical outcome to ECT and other antidepressant therapies. One challenge facing such studies is selecting from among the many available metrics, which characterize complementary and sometimes non-overlapping aspects of brain function and connectomics.

View Article and Find Full Text PDF

Age-related olfactory decline, or presbyosmia, is a prevalent condition with potentially devastating consequences on both quality of life and safety. Despite clear evidence for this decline, it is unknown whether presbyosmia is sex-dependent and also whether it is due to central or peripheral olfactory system deterioration. Therefore, the goals of this study were to investigate the neurofunctional substrate of olfactory decline and examine its relationship to age and sex in thirty-seven (18 women, 19 men) healthy older participants using olfactory functional MRI (fMRI).

View Article and Find Full Text PDF

The study of human olfaction is a highly complex and valuable field with applications ranging from biomedical research to clinical evaluation. Currently, evaluation of the functions of the human central olfactory system with functional magnetic resonance imaging (fMRI) is still a challenge because of several technical difficulties. There are some significant variables to take into account when considering an effective method for mapping the function of the central olfactory system using fMRI, including proper odorant selection, the interaction between odor presentation and respiration, and potential anticipation of or habituation to odorants.

View Article and Find Full Text PDF

Background: Olfactory deficits are present in early Alzheimer's disease (AD) and mild cognitively impaired (MCI) patients. However, whether these deficits are due to dysfunction of the central or peripheral olfactory nervous system remains uncertain. This question is fundamentally important for developing imaging biomarkers for AD using olfactory testing.

View Article and Find Full Text PDF

Objectives: The risk of cognitive impairment is a concern for patients with major depressive disorder receiving electroconvulsive therapy (ECT). Here, we evaluate the acute, short-term and long-term effects of ECT on tests of processing speed, executive function, memory, and attention.

Methods: Forty-four patients with major depressive disorder receiving ECT (61% right unilateral, 39% mixed right unilateral-bitemporal, left unilateral, and/or bitemporal lead placement) underwent a cognitive battery prior to ECT (T1), after 2 sessions (T2), and at the end of the index (T3).

View Article and Find Full Text PDF

Background: Electroconvulsive therapy (ECT) is a highly effective brain stimulation treatment for severe depression. Identifying neurochemical changes linked with ECT may point to biomarkers and predictors of successful treatment response.

Methods: We used proton magnetic resonance spectroscopy (1H-MRS) to measure longitudinal changes in glutamate/glutamine (Glx), creatine (Cre), choline (Cho) and -acetylaspartate (NAA) in the dorsal (dACC) and subgenual anterior cingulate cortex (sgACC) and bilateral hippocampus in patients receiving ECT scanned at baseline, after the second ECT session and after the ECT treatment series.

View Article and Find Full Text PDF

Though electroconvulsive therapy (ECT) is an established treatment for severe depression, the neurobiological factors accounting for the clinical effects of ECT are largely unknown. Myo-inositol, a neurometabolite linked with glial activity, is reported as reduced in fronto-limbic regions in patients with depression. Whether changes in myo-inositol relate to the antidepressant effects of ECT is unknown.

View Article and Find Full Text PDF

Patients with major depression show reductions in striatal and paleostriatal volumes. The functional integrity and connectivity of these regions are also shown to change with antidepressant response. Electroconvulsive therapy (ECT) is a robust and rapidly acting treatment for severe depression.

View Article and Find Full Text PDF

Background: The formation of an odor percept in humans is strongly associated with visual information. However, much less is known about the roles of learning and memory in shaping the multisensory nature of odor representations in the brain.

Method: The dynamics of odor and visual association in olfaction was investigated using three functional magnetic resonance imaging (fMRI) paradigms.

View Article and Find Full Text PDF

Mutations within the HFE protein gene sequence have been associated with increased risk of developing a number of neurodegenerative disorders. To this effect, an animal model has been created which incorporates the mouse homologue to the human H63D-HFE mutation: the H67D-HFE knock-in mouse. These mice exhibit alterations in iron management proteins, have increased neuronal oxidative stress, and a disruption in cholesterol regulation.

View Article and Find Full Text PDF

Background: Ketamine elicits an acute antidepressant effect in patients with major depressive disorder (MDD). Here, we used diffusion imaging to explore whether regional differences in white matter microstructure prior to treatment may predict clinical response 24h following ketamine infusion in 10 MDD patients.

Methods: FSL's Tract-Based Spatial Statistics (TBSS) established voxel-level differences in fractional anisotropy (FA) between responders (patients showing >50% improvement in symptoms 24h post-infusion) and non-responders in major white matter pathways.

View Article and Find Full Text PDF