Publications by authors named "Megha A Deshmukh"

Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society. The field of catalysis has been revolutionized by single-atom catalysts (SACs), which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports. Recently, bimetallic SACs (bimSACs) have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.

View Article and Find Full Text PDF

In the present investigation, copper benzene tricarboxylate metal organic frameworks (CuBTC MOF) and Au nanoparticle incorporated CuBTC MOF (Au@CuBTC) were synthesized by the conventional solvothermal method in a round bottom flask at 105°C and kept in an oil bath. The synthesized CuBTC MOF and Au@CuBTC MOFs were characterized by structure using X-ray diffraction (XRD) spectroscopic methods including Fourier Transform Infrared spectroscopy, Raman Spectroscopy, X-ray Photoelectron Spectroscopy (XPS), and Energy dispersive spectroscopy (EDS). We also characterized them using morphological techniques such as Field emission scanning electron microscopy (FE-SEM), and electrochemical approaches that included cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS).

View Article and Find Full Text PDF

Cylindrical fullerenes (or carbon nanotubes (CNTs)) have been extensively investigated as potential sensor platforms due to effective and practical manipulation of their physical and chemical properties by functionalization/doping with chemical groups suitable for novel nanocarrier systems. CNTs play a significant role in biomedical applications due to rapid development of synthetic methods, structural integration, surface area-controlled heteroatom doping, and electrical conductivity. This review article comprehensively summarized recent trends in biomedical science and technologies utilizing a promising nanomaterial of CNTs in disease diagnosis and therapeutics, based on their biocompatibility and significance in drug delivery, implants, and bio imaging.

View Article and Find Full Text PDF

Heavy metal ions are considered as one of the major water pollutants, revealing health hazards as well as threat to the ecosystem. Therefore, investigation of most versatile materials for the sensitive and selective detection of heavy metal ions is need of the hour. Proposed work emphasizes the synthesis of conducting polymer and carbon nanotube nanocomposite modified with chelating ligand for the detection of heavy metal ions.

View Article and Find Full Text PDF

Current review signifies recent trends and challenges in the development of electrochemical sensors based on organic conducting polymers (OCPs), carbon nanotubes (CNTs) and their composites for the determination of trace heavy metal ions in water are reviewed. OCPs and CNTs have some suitable properties, such as good electrical, mechanical, chemical and structural properties as well as environmental stability, etc. However, some of these materials still have significant limitations toward selective and sensitive detection of trace heavy metal ions.

View Article and Find Full Text PDF