Publications by authors named "Megen Wittling"

Background: Responsiveness to chimeric antigen receptor (CAR) T cell therapy correlates with CAR T cell expansion and persistence in vivo. Multiple strategies improve persistence by increasing stem-like properties or sustaining CAR T cell activity with combination therapies. Here, we describe the intrinsic ability of CAR T cells to differentiate into memory T cells, the effect of cytokine armoring, and neoadjuvant CD4 depletion therapy on CAR and tumor-specific endogenous memory T cells.

View Article and Find Full Text PDF

CAR T cells require optimization to be effective in patients with solid tumors. There are many barriers affecting their ability to succeed. One barrier is persistence, as to achieve an optimal antitumor response, infused CAR T cells must engraft and persist.

View Article and Find Full Text PDF

Background: How distinct methods of host preconditioning impact the efficacy of adoptively transferred antitumor T helper cells is unknown.

Methods: CD4 T cells with a transgenic T-cell receptor that recognize tyrosinase-related peptide (TRP)-1 melanoma antigen were polarized to the T helper 17 (Th17) phenotype and then transferred into melanoma-bearing mice preconditioned with either total body irradiation or chemotherapy.

Results: We found that preconditioning mice with a non-myeloablative dose of total body irradiation (TBI of 5 Gy) was more effective than using an equivalently dosed non-myeloablative chemotherapy (cyclophosphamide (CTX) of 200 mg/kg) at augmenting therapeutic activity of antitumor TRP-1 Th17 cells.

View Article and Find Full Text PDF

Systemic administration of homeostatic γ-chain cytokines mediates antitumor responses in some patients treated with adoptive immunotherapy. Yet many patients experience toxic side effects. New work presented herein suggests these limitations can be overcome by membrane-tethering IL15 and IL21 to T-cell products.

View Article and Find Full Text PDF

Background: Mechanisms by which distinct methods of host preconditioning impact the efficacy of adoptively transferred antitumor T helper cells is unknown.

Methods: CD4 T cells with a transgenic TCR that recognize TRP-1 melanoma antigen were polarized to the T helper 17 (Th17) phenotype and then transferred into melanoma-bearing mice preconditioned with either total body irradiation or chemotherapy.

Results: We found that preconditioning mice with a non-myeloablative dose of total body irradiation (TBI of 5 Gy) was more effective than using an equivalently dosed non-myeloablative chemotherapy (CTX at 200 mg/kg) at augmenting therapeutic activity of anti-tumor TRP-1 Th17 cells.

View Article and Find Full Text PDF

Type I interferons (IFN-I) were first discovered as an antiviral factor by Isaacs and Lindenmann in 1957, but they are now known to also modulate innate and adaptive immunity and suppress proliferation of cancer cells. While much has been revealed about IFN-I, it remains a mystery as to why there are 16 different IFN-I gene products, including IFNβ, IFNω, and 12 subtypes of IFNα. Here, we discuss shared and unique aspects of these IFN-I in the context of their evolution, expression patterns, and signaling through their shared heterodimeric receptor.

View Article and Find Full Text PDF

Type I interferons (IFNs) signal by forming a high affinity IFN-IFNAR2 dimer, which subsequently recruits IFNAR1 to form a ternary complex that initiates JAK/STAT signaling. Among the 12 IFNα subtypes, IFNα1 has a uniquely low affinity for IFNAR2 (<100 × of the other IFNα subtypes) and commensurately weak antiviral activity, suggesting an undefined function distinct from suppression of viral infections. Also unique in IFNα1 is substitution of a serine for phenylalanine at position 27, a contact point that stabilizes the IFNα:IFNAR2 hydrophobic interface.

View Article and Find Full Text PDF

Background: Neural crest is a vertebrate specific cell population. Induced at lateral borders of the neural plate, neural crest cells (NCCs) subsequently undergo epithelial-to-mesenchymal transition (EMT) to detach from the neuroepithelium before migrating into various locations in the embryo. Despite the wealth of knowledge of transcription factors involved in this process, little is known about the effectors that directly regulate neural crest EMT and migration.

View Article and Find Full Text PDF