Publications by authors named "Megee S"

Background: The limited characterization of equine skin, eye and hoof epithelial stem cell (ESC) and differentiation markers impedes the investigation of the physiology and pathophysiology of these tissues.

Hypothesis/objectives: To characterize ESC and differentiation marker expression in epithelial tissues of the equine eye, haired skin and hoof capsule.

Methods: Indirect immunofluorescence microscopy and immunoblotting were used to detect expression and tissue localization of keratin (K) isoforms K3, K10, K14 and K124, the transcription factor p63 (a marker of ESCs) and phosphorylated p63 [pp63; a marker of ESC transition to transit-amplifying (TA) cell] in epithelial tissues of the foot (haired skin, hoof coronet and hoof lamellae) and the eye (limbus and cornea).

View Article and Find Full Text PDF

Genetic modification of germline stem cells (GSCs) is an alternative approach to generate large transgenic animals where transgenic GSCs are transplanted into a recipient testis to generate donor-derived transgenic sperm. The objective of the present study was to explore the application of viral vectors in delivering an enhanced green fluorescent protein (EGFP) transgene into GSCs for production of transgenic gametes through germ cell transplantation. Both adeno-associated virus (AAV)- and lentivirus (LV)-based vectors were effective in transducing pig GSCs, resulting in the production of transgenic sperm in recipient boars.

View Article and Find Full Text PDF

Germline stem cells (GSCs) can be used for large animal transgenesis, in which GSCs that are genetically manipulated in vitro are transplanted into a recipient testis to generate donor-derived transgenic sperm. The objectives of this study were to explore a non-viral approach for transgene delivery into goat GSCs and to investigate the efficiency of nucleofection in producing transgenic sperm. Four recipient goats received fractionated irradiation at 8 weeks of age to deplete endogenous GSCs.

View Article and Find Full Text PDF

Reasons For Performing Study: Abnormal epidermal stem cell regulation may contribute to the pathogenesis of equine chronic laminitis.

Objective: To analyse the involvement of p63, a regulator of epidermal stem cell proliferative potential, in chronic laminitis.

Methods: Epidermal tissues from skin, coronet and lamellae of the dorsal foot were harvested from 5 horses with chronic laminitis and 5 control horses.

View Article and Find Full Text PDF

Mammalian spermatogonial stem cells reside on the basement membrane of the seminiferous tubules. The mechanisms responsible for maintenance of spermatogonia at the basement membrane are unclear. Since acetylated alpha-tubulin (Ac-alpha-Tu) is a component of long-lived, stable microtubules and deacetylation of alpha-tubulin enhances cell motility, we hypothesized that acetylation of alpha-tubulin might be associated with positioning of spermatogonia at the basement membrane.

View Article and Find Full Text PDF

Asymmetric division of germline stem cells in vertebrates was proposed a century ago; however, direct evidence for asymmetric division of mammalian spermatogonial stem cells (SSCs) has been scarce. Here, we report that ubiquitin carboxy-terminal hydrolase 1 (UCH-L1) is expressed in type A (A(s), A(pr), and A(al)) spermatogonia located at the basement membrane (BM) of seminiferous tubules at high and low levels, but not in differentiated germ cells distant from the BM. Asymmetric segregation of UCH-L1 was associated with self-renewal versus differentiation divisions of SSCs as defined by co-localization of UCH-L1(high) and PLZF, a known determinant of undifferentiated SSCs, versus co-localization of UCH-L1(low/-) with proteins expressed during SSC differentiation (DAZL, DDX4, c-KIT).

View Article and Find Full Text PDF

Grafting of immature mammalian testis tissue to mouse hosts can preserve the male germline. To make this approach applicable to a clinical or field situation, it is imperative that the testis tissue and/or spermatozoa harvested from grafted tissue are preserved successfully. The aim of the present study was to evaluate protocols for the preservation of testis tissue in a porcine model.

View Article and Find Full Text PDF

In juvenile monkeys, precocious puberty can be induced by administration of gonadotropins resulting in testicular somatic cell maturation and germ cell differentiation. It is, however, unknown whether testicular maturation can also be induced in younger monkeys. Here we used testis tissue xenografting to investigate whether infant monkey testis tissue will undergo somatic cell maturation and/or spermatogenesis in response to endogenous adult mouse gonadotropins or exogenous gonadotropins.

View Article and Find Full Text PDF

Recovery of germ cells could be an option for preservation of the genetic pool of endangered animals. In immature males, xenografting of testis tissue provides the opportunity to recover sperm from these animals. In adult animals, xenografting has been less successful, but de novo morphogenesis of functional testis tissue from dissociated testis cells could be an alternative.

View Article and Find Full Text PDF

We explored whether exposure of mammalian germ line stem cells to adeno-associated virus (AAV), a gene therapy vector, would lead to stable transduction and transgene transmission. Mouse germ cells harvested from experimentally induced cryptorchid donor testes were exposed in vitro to AAV vectors carrying a GFP transgene and transplanted to germ cell-depleted syngeneic recipient testes, resulting in colonization of the recipient testes by transgenic donor cells. Mating of recipient males to wild-type females yielded 10% transgenic offspring.

View Article and Find Full Text PDF

During mammalian development, morphogenesis of the testis requires the coordinated interplay of somatic cells to form seminiferous cords in which the primitive germ cells reside. These cords are the precursor of the functional male gonad and as such form the basis of male fertility. Cell migration during mammalian organogenesis and formation of complex tissues, such as the testis, are difficult to study in situ.

View Article and Find Full Text PDF

Identification and isolation of spermatogonial stem cells (SSCs) are a prerequisite for culture, genetic manipulation, and/or transplantation research. In this study, we established that expression of PGP 9.5 is a spermatogonia-specific marker in porcine testes.

View Article and Find Full Text PDF

Porcine sperm are extremely sensitive to the damaging effects of cold shock. It has been shown that cholesterol-binding molecules, such as 2-hydroxypropyl-beta-cyclodextrin (HBCD), improve post-cooling porcine sperm viability when added to an egg yolk-based extender, but also enhance sperm capacitation in other species. The objective of this study was to determine the effects of HBCD and cholesterol 3-sulfate (ChS) on porcine sperm viability and capacitation following cold shock or incubation under conditions that support capacitation using a defined medium.

View Article and Find Full Text PDF

Transplantation of spermatogonial stem cells into syngeneic or immunosuppressed recipient mice or rats can result in donor-derived spermatogenesis and fertility. Recently, this approach has been employed to introduce a transgene into the male germline. Germ-cell transplantation in species other than laboratory rodents, if successful, holds great promise as an alternative to the inefficient methods currently available to generate transgenic farm animals that can produce therapeutic proteins in their milk or provide organs for transplantation to humans.

View Article and Find Full Text PDF

Transplantation of spermatogonial stem cells provides a unique approach for the study of spermatogenesis and manipulation of the male germ line. This technique may also offer an alternative to the currently inefficient methods of producing transgenic domestic animals. We have recently established the technique of spermatogonial transplantation, originally developed in laboratory rodents, in pigs, and this study was aimed to extend the technique to the goat.

View Article and Find Full Text PDF

Spermatogonial stem cells form the foundation of spermatogenesis, and their transplantation provides a unique opportunity to study spermatogenesis and may offer an alternative approach for animal transgenesis. This study was designed to extend the technique of spermatogonial transplantation to an economically important, large-animal model. Isolated immature pig testes were used to develop the intratesticular injection technique.

View Article and Find Full Text PDF

The laxative action of phenolphthalein (5) is believed to result from induction of potassium and water efflux from the colon epithelium. In cultured cells, K+ efflux is promoted by 5 and by a contaminant (1) present in commercial phenol red. Six compounds with chemical structures related to those of 5 and 1 were tested for ability to induce the release of 86Rb from COS-7 cells preloaded with this isotope: 4,4'-(9-fluorenylidene)diphenol (2), 4, 4'-(9-fluorenylidene)dianiline, 4, 4'-(9-fluorenylidene)bisphenoxyethanol, 1,1'-bi-2-naphthol, 4, 4'-biphenol, and bis(4-hydroxyphenyl)methane.

View Article and Find Full Text PDF