Publications by authors named "Megan Wancura"

Polymeric heart valves offer the potential to overcome the limited durability of tissue based bioprosthetic valves and the need for anticoagulant therapy of mechanical valve replacement options. However, developing a single-phase material with requisite biological properties and target mechanical properties remains a challenge. In this study, a composite heart valve material was developed where an electrospun mesh provides tunable mechanical properties and a hydrogel coating confers an antifouling surface for thromboresistance.

View Article and Find Full Text PDF

Attachment of bacteria onto a surface, consequent signaling, and accumulation and growth of the surface-bound bacterial population are key initial steps in the formation of pathogenic biofilms. While recent reports have hinted that surface mechanics may affect the accumulation of bacteria on that surface, the processes that underlie bacterial perception of surface mechanics and modulation of accumulation in response to surface mechanics remain largely unknown. We use thin and thick hydrogels coated on glass to create composite materials with different mechanics (higher elasticity for thin composites; lower elasticity for thick composites) but with the same surface adhesivity and chemistry.

View Article and Find Full Text PDF

Bioactive hydrogel coatings offer a promising route to introduce sustained thromboresistance to cardiovascular devices without compromising bulk mechanical properties. Poly(ethylene glycol)-based hydrogels provide antifouling properties to limit acute thromobosis and incorporation of adhesive ligands can be used to promote endothelialization. However, conventional PEG-based hydrogels at stiffnesses that promote cell attachment can be brittle and prone to damage in a surgical setting, limiting their utility in clinical applications.

View Article and Find Full Text PDF

Device failure due to undesired biological responses remains a substantial roadblock in the development and translation of new devices into clinical care. Polyethylene glycol (PEG)-based hydrogel coatings can be used to confer antifouling properties to medical devices-enabling minimization of biological responses such as bacterial infection, thrombosis, and foreign body reactions. Application of hydrogel coatings to diverse substrates requires careful consideration of multiple material factors.

View Article and Find Full Text PDF

The attachment of bacteria onto a surface, consequent signaling, and the accumulation and growth of the surface-bound bacterial population are key initial steps in the formation of pathogenic biofilms. While recent reports have hinted that the stiffness of a surface may affect the accumulation of bacteria on that surface, the processes that underlie bacterial perception of and response to surface stiffness are unknown. Furthermore, whether, and how, the surface stiffness impacts biofilm development, after initial accumulation, is not known.

View Article and Find Full Text PDF

Although xenograft biomaterials have been used for decades in replacement heart valves, they continue to face multiple limitations, including limited durability, mineralization, and restricted design space due to their biological origins. These issues necessitate the need for novel replacement heart valve biomaterials that are durable, non-thrombogenic, and compatible with transcatheter aortic valve replacement devices. In this study, we explored the suitability of an electrospun poly(carbonate urethane) (ES-PCU) mesh coated with a poly(ethylene glycol) diacrylate (PEGDA) hydrogel as a synthetic biomaterial for replacement heart valve leaflets.

View Article and Find Full Text PDF

Bioprosthetic valves (BPVs) have a limited lifespan in the body necessitating repeated surgeries to replace the failed implant. Early failure of these implants has been linked to various surface properties of the valve. Surface properties of BPVs are significantly different from physiological valves because of the fixation process used when processing the xenograft tissue.

View Article and Find Full Text PDF

Hydrogels have long been established as materials with tunable stiffness and chemistry that enable controlled cellular interactions. When applied as coatings, hydrogels can be used to introduce biofunctionality to medical devices with minimal effect on bulk properties. However, it remains challenging to uniformly apply hydrogel coatings to three dimensional geometries without substantially changing the manufacturing process and potentially affecting device function.

View Article and Find Full Text PDF

Purpose Of Review: The current review highlights the complexity of the pediatric and adolescent gynecology subspecialty as well as the recent and exciting opportunities for innovation within the field.

Recent Findings: The opportunities for concept, treatment, instrument, and knowledge-transfer innovation to better serve the specific needs of pediatric gynecology patients include novel approaches to neovagina creation using magnets, improving postoperative vaginal wound healing through newly designed and degradable vaginal stents, and complex Mullerian reconstructive surgical planning using virtual reality immersive experiential training.

Summary: There is a significant window of opportunity to address the needs of pediatric, adolescent and adult gynecological patients with new innovative concepts and tools.

View Article and Find Full Text PDF

Blepharisma americanum, a member of the understudied ciliate class Heterotrichea, has a moniliform somatic macronucleus that resembles beads on a string. Blepharisma americanum is distinguishable by its pink coloration derived from the autofluorescent pigment blepharismin and tends to have a single somatic macronucleus with 3-6 nodes and multiple germline micronuclei. We used fluorescence confocal microscopy to explore the DNA content and amplification between the somatic and germline nuclei of B.

View Article and Find Full Text PDF