Publications by authors named "Megan Senchuk"

Huntington's disease (HD) is one of at least nine polyglutamine diseases caused by a trinucleotide CAG repeat expansion, all of which lead to age-onset neurodegeneration. Mitochondrial dynamics and function are disrupted in HD and other polyglutamine diseases. While multiple studies have found beneficial effects from decreasing mitochondrial fragmentation in HD models by disrupting the mitochondrial fission protein DRP1, disrupting DRP1 can also have detrimental consequences in wild-type animals and HD models.

View Article and Find Full Text PDF

Huntington's disease (HD) is an adult-onset neurodegenerative disease caused by a trinucleotide CAG repeat expansion in the gene. While the pathogenesis of HD is incompletely understood, mitochondrial dysfunction is thought to be a key contributor. In this work, we used models to elucidate the role of mitochondrial dynamics in HD.

View Article and Find Full Text PDF

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most frequent cause of late-onset, familial Parkinson's disease (PD), and LRRK2 variants are associated with increased risk for sporadic PD. While advanced age represents the strongest risk factor for disease development, it remains unclear how different age-related pathways interact to regulate LRRK2-driven late-onset PD. In this study, we employ a C.

View Article and Find Full Text PDF

Mitochondria are dynamic organelles that can change shape and size depending on the needs of the cell through the processes of mitochondrial fission and fusion. In this work, we investigated the role of mitochondrial dynamics in organismal stress response. By using C.

View Article and Find Full Text PDF

Background: The mitochondrial unfolded protein response (mitoUPR) is a stress response pathway activated by disruption of proteostasis in the mitochondria. This pathway has been proposed to influence lifespan, with studies suggesting that mitoUPR activation has complex effects on longevity.

Results: Here, we examined the contribution of the mitoUPR to the survival and lifespan of three long-lived mitochondrial mutants in Caenorhabditis elegans by modulating the levels of ATFS-1, the central transcription factor that mediates the mitoUPR.

View Article and Find Full Text PDF

On the basis of multiple experiments demonstrating that high resistance to stress is associated with long lifespan, it has been proposed that stress resistance is a key determinant of longevity. However, the extent to which high resistance to stress is necessary or sufficient for long life is currently unclear. In this work, we use a genetic approach to disrupt different stress response pathways and examine the resulting effect on the longevity of the long-lived insulin-like growth factor 1 (IGF1) receptor mutant daf-2.

View Article and Find Full Text PDF

Parkinson's disease (PD) is the second most common neurodegenerative disease and is characterized by the formation of α-synuclein-containing protein aggregates called Lewy bodies within the brain. A crucial role for α-synuclein in the pathogenesis of PD is also suggested by the fact that point mutations, increased copy number, or polymorphisms in the α-synuclein gene SNCA all cause or contribute to the development of PD. In addition to SNCA, an increasing number of other genes have been implicated in PD.

View Article and Find Full Text PDF

Mild deficits in mitochondrial function have been shown to increase lifespan in multiple species including worms, flies and mice. Here, we study three C. elegans mitochondrial mutants (clk-1, isp-1 and nuo-6) to identify overlapping genetic pathways that contribute to their longevity.

View Article and Find Full Text PDF

Oxidative stress has been proposed to be one of the main causes of aging and has been implicated in the pathogenesis of many diseases. Sensitivity to oxidative stress can be measured by quantifying survival following exposure to a reactive oxygen species (ROS)-generating compound such as paraquat or juglone. Sensitivity to oxidative stress is a balance between basal levels of ROS, the ability to detoxify ROS, and the ability to repair ROS-mediated damage.

View Article and Find Full Text PDF

While the pathogenesis of Parkinson's disease (PD) is incompletely understood, mitochondrial dysfunction is thought to play a crucial role in disease pathogenesis. Here, we examined the relationship between mitochondrial function and dopamine neuron dysfunction and death using C. elegans mutants for three mitochondria-related genes implicated in monogenic PD (pdr-1/PRKN, pink-1/PINK1 and djr-1.

View Article and Find Full Text PDF

Cell-to-cell spreading of misfolded α-synuclein (α-syn) is suggested to contribute to the progression of neuropathology in Parkinson's disease (PD). Compelling evidence supports the hypothesis that misfolded α-syn transmits from neuron-to-neuron and seeds aggregation of the protein in the recipient cells. Furthermore, α-syn frequently appears to propagate in the brains of PD patients following a stereotypic pattern consistent with progressive spreading along anatomical pathways.

View Article and Find Full Text PDF

Mutations affecting components of the mitochondrial electron transport chain have been shown to increase lifespan in multiple species including the worm Caenorhabditis elegans. While it was originally proposed that decreased generation of reactive oxygen species (ROS) resulting from lower rates of electron transport could account for the observed increase in lifespan, recent evidence indicates that ROS levels are increased in at least some of these long-lived mitochondrial mutants. Here, we show that the long-lived mitochondrial mutant isp-1 worms have increased resistance to oxidative stress.

View Article and Find Full Text PDF

Huntington's disease (HD) is an adult onset neurodegenerative disorder for which there is currently no cure. While HD patients and animal models of the disease exhibit increased oxidative damage, it is currently uncertain to what extent oxidative stress contributes to disease pathogenesis. In this work, we use a genetic approach to define the role of oxidative stress in HD.

View Article and Find Full Text PDF

In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C.

View Article and Find Full Text PDF

Aging is the greatest risk factor for the development of Parkinson's disease (PD). However, the role of aging in the pathogenesis of PD is not known and it is currently uncertain why the symptoms take many decades to develop when inherited mutations that cause the disease can be present from birth. We hypothesize that there are specific changes that take place during the aging process that make cells susceptible to disease-causing mutations that are well-tolerated at younger ages.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are highly reactive, oxygen-containing molecules that can cause molecular damage within the cell. While the accumulation of ROS-mediated damage is widely believed to be one of the main causes of aging, ROS also act in signaling pathways. Recent work has demonstrated that increasing levels of superoxide, one form of ROS, through treatment with paraquat, results in increased lifespan.

View Article and Find Full Text PDF

Netrin 1 is a diffusible factor that attracts commissural axons to the floor plate of the spinal cord. Recent evidence indicates that Netrin 1 is widely expressed and functions in the development of multiple organ systems. In mammals, there are three genes encoding Netrins, whereas in zebrafish, only the Netrin 1 orthologs netrin 1a and netrin 1b have been identified.

View Article and Find Full Text PDF

The Caenorhabditis elegans pos-1 gene encodes a zinc-finger protein that is required for germline specification during embryogenesis. The maternally provided mRNA is translationally regulated both spatially and temporally during early development. We have cloned orthologs of pos-1 from C.

View Article and Find Full Text PDF