Experiments were conducted in an UK inter-city train carriage with the aim of evaluating the risk of infection to the SARS-CoV-2 virus via airborne transmission. The experiments included in-service CO measurements and the measurement of salt aerosol concentrations released within the carriage. Computational fluid dynamics simulations of the carriage airflow were also used to visualise the airflow patterns, and the efficacy of the HVAC filter material was tested in a laboratory.
View Article and Find Full Text PDFUnderstanding airborne infectious disease transmission on public transport is essential to reducing the risk of infection of passengers and crew members. We propose a new one-dimensional (1D) model that predicts the longitudinal dispersion of airborne contaminants and the risk of disease transmission inside a railway carriage. We compare the results of this 1D-model to the predictions of a model that assumes the carriage is fully mixed.
View Article and Find Full Text PDFThe year 2020 has seen the emergence of a global pandemic as a result of the disease COVID-19. This report reviews knowledge of the transmission of COVID-19 indoors, examines the evidence for mitigating measures, and considers the implications for wintertime with a focus on ventilation.
View Article and Find Full Text PDFThe swimming direction of biological or artificial microscale swimmers tends to be randomised over long time-scales by thermal fluctuations. Bacteria use various strategies to bias swimming behaviour and achieve directed motion against a flow, maintain alignment with gravity or travel up a chemical gradient. Herein, we explore a purely geometric means of biasing the motion of artificial nanorod swimmers.
View Article and Find Full Text PDFBiological systems often involve the self-assembly of basic components into complex and functioning structures. Artificial systems that mimic such processes can provide a well-controlled setting to explore the principles involved and also synthesize useful micromachines. Our experiments show that immotile, but active, components self-assemble into two types of structure that exhibit the fundamental forms of motility: translation and rotation.
View Article and Find Full Text PDF