Advances in deep learning and sparse sensing have emerged as powerful tools for monitoring human motion in natural environments. We develop a deep learning architecture, constructed from a shallow recurrent decoder network, that expands human motion data by mapping a limited (sparse) number of sensors to a comprehensive (dense) configuration, thereby inferring the motion of unmonitored body segments. Even with a single sensor, we reconstruct the comprehensive set of time series measurements, which are important for tracking and informing movement-related health and performance outcomes.
View Article and Find Full Text PDFPredicting an individual's response to an exoskeleton and understanding what data are needed to characterize responses remains challenging. Specifically, we lack a theoretical framework capable of quantifying heterogeneous responses to exoskeleton interventions. We leverage a neural network-based discrepancy modeling framework to quantify complex changes in gait in response to passive ankle exoskeletons in nondisabled adults.
View Article and Find Full Text PDFWe currently lack a theoretical framework capable of characterizing heterogeneous responses to exoskeleton interventions. Predicting an individual's response to an exoskeleton and understanding what data are needed to characterize responses has been a persistent challenge. In this study, we leverage a neural network-based discrepancy modeling framework to quantify complex changes in gait in response to passive ankle exoskeletons in nondisabled adults.
View Article and Find Full Text PDF