The brown rat () occupies nearly every terrestrial habitat with a human presence and is one of our most important model organisms. Despite this prevalence, gaps remain in understanding the evolution of brown rat commensalism, their global dispersal, and mechanisms underlying contemporary adaptations to diverse environments. In this Review, we explore recent advances in the evolutionary history of brown rats and discuss key challenges, including finding and accurately dating historical specimens, disentangling histories of multiple domestication events, and synthesizing functional variation in wild rat populations with the development of laboratory strains.
View Article and Find Full Text PDFReplicated clines across environmental gradients can be strong evidence of adaptation. House mice (Mus musculus domesticus) were introduced to the Americas by European colonizers and are now widely distributed from Tierra del Fuego to Alaska. Multiple aspects of climate, such as temperature, vary predictably across latitude in the Americas.
View Article and Find Full Text PDFUrban evolutionary ecology is inherently interdisciplinary. Moreover, it is a field with global significance. However, bringing researchers and resources together across fields and countries is challenging.
View Article and Find Full Text PDFDeveloping robust professional networks can help shape the trajectories of early career scientists. Yet, historical inequities in science, technology, engineering, and mathematics (STEM) fields make access to these networks highly variable across academic programmes, and senior academics often have little time for mentoring. Here, we illustrate the success of a virtual Laboratory Meeting Programme (LaMP).
View Article and Find Full Text PDFIncreasing evidence suggests that urbanization is associated with higher mutation rates, which can affect the health and evolution of organisms that inhabit cities. Elevated pollution levels in urban areas can induce DNA damage, leading to de novo mutations. Studies on mutations induced by urban pollution are most prevalent in humans and microorganisms, whereas studies of non-human eukaryotes are rare, even though increased mutation rates have the potential to affect organisms and their populations in contemporary time.
View Article and Find Full Text PDFThe laboratory mouse has served as the premier animal model system for both basic and preclinical investigations for over a century. However, laboratory mice capture only a subset of the genetic variation found in wild mouse populations, ultimately limiting the potential of classical inbred strains to uncover phenotype-associated variants and pathways. Wild mouse populations are reservoirs of genetic diversity that could facilitate the discovery of new functional and disease-associated alleles, but the scarcity of commercially available, well-characterized wild mouse strains limits their broader adoption in biomedical research.
View Article and Find Full Text PDFParallel clines across environmental gradients can be strong evidence of adaptation. House mice () were introduced to the Americas by European colonizers and are now widely distributed from Tierra del Fuego to Alaska. Multiple aspects of climate, such as temperature, vary predictably across latitude in the Americas.
View Article and Find Full Text PDFThe laboratory mouse has served as the premier animal model system for both basic and preclinical investigations for a century. However, laboratory mice capture a narrow subset of the genetic variation found in wild mouse populations. This consideration inherently restricts the scope of potential discovery in laboratory models and narrows the pool of potentially identified phenotype-associated variants and pathways.
View Article and Find Full Text PDFAs climate change threatens species' persistence, predicting the potential for species to adapt to rapidly changing environments is imperative for the development of effective conservation strategies. Eco-evolutionary individual-based models (IBMs) can be useful tools for achieving this objective. We performed a literature review to identify studies that apply these tools in marine systems.
View Article and Find Full Text PDFParallel changes in genotype and phenotype in response to similar selection pressures in different populations provide compelling evidence of adaptation. House mice (Mus musculus domesticus) have recently colonized North America and are found in a wide range of environments. Here we measure phenotypic and genotypic differentiation among house mice from five populations sampled across 21° of latitude in western North America, and we compare our results to a parallel latitudinal cline in eastern North America.
View Article and Find Full Text PDFBackground: The three main subspecies of house mice, Mus musculus castaneus, Mus musculus domesticus, and Mus musculus musculus, are estimated to have diverged ~ 350-500KYA. Resolution of the details of their evolutionary history is complicated by their relatively recent divergence, ongoing gene flow among the subspecies, and complex demographic histories. Previous studies have been limited to some extent by the number of loci surveyed and/or by the scope of the method used.
View Article and Find Full Text PDFThe extent to which the gut microbiota may play a role in latitudinal clines of body mass variation (i.e., Bergmann's rule) remains largely unexplored.
View Article and Find Full Text PDFIdentifying a common set of genes that mediate host-microbial interactions across populations and species of mammals has broad relevance for human health and animal biology. However, the genetic basis of the gut microbial composition in natural populations remains largely unknown outside of humans. Here, we used wild house mouse populations as a model system to ask three major questions: (a) Does host genetic relatedness explain interindividual variation in gut microbial composition? (b) Do population differences in the microbiota persist in a common environment? (c) What are the host genes associated with microbial richness and the relative abundance of bacterial genera? We found that host genetic distance is a strong predictor of the gut microbial composition as characterized by 16S amplicon sequencing.
View Article and Find Full Text PDFInteractions between genes can influence how selection acts on sequence variation. In gene regulatory networks, genes that affect the expression of many other genes may be under stronger evolutionary constraint than genes whose expression affects fewer partners. While this has been studied for individual tissue types, we know less about the effects of regulatory networks on gene evolution across different tissue types.
View Article and Find Full Text PDFMammals house a diversity of bacteria that affect health in various ways, but the routes by which bacterial lineages are transmitted between hosts remain poorly understood. We experimentally determined microbiota transmission modes by deriving 17 inbred mouse lines from two wild populations and monitoring their gut microbiotas for up to 11 host generations. Individual- and population-level microbiota compositions were maintained within mouse lines throughout the experiment, indicating predominantly vertical inheritance of the microbiota.
View Article and Find Full Text PDFHouse mice (Mus musculus) arrived in the Americas only recently in association with European colonization (~400-600 generations), but have spread rapidly and show evidence of local adaptation. Here, we take advantage of this genetic model system to investigate the genomic basis of environmental adaptation in house mice. First, we documented clinal patterns of phenotypic variation in 50 wild-caught mice from a latitudinal transect in Eastern North America.
View Article and Find Full Text PDFChanges in -regulatory regions are thought to play a major role in the genetic basis of adaptation. However, few studies have linked -regulatory variation with adaptation in natural populations. Here, using a combination of exome and RNA-seq data, we performed expression quantitative trait locus (eQTL) mapping and allele-specific expression analyses to study the genetic architecture of regulatory variation in wild house mice () using individuals from five populations collected along a latitudinal cline in eastern North America.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
September 2016
Members of the genus Neisseria have been isolated from or detected in a wide range of animals, from non-human primates and felids to a rodent, the guinea pig. By means of selective culture, biochemical testing, Gram staining and PCR screening for the Neisseria-specific internal transcribed spacer region of the rRNA operon, we isolated four strains of the genus Neisseria from the oral cavity of the wild house mouse, Mus musculus subsp. domesticus.
View Article and Find Full Text PDFThe house mouse, Mus musculus, was established in the early 1900s as one of the first genetic model organisms owing to its short generation time, comparatively large litters, ease of husbandry, and visible phenotypic variants. For these reasons and because they are mammals, house mice are well suited to serve as models for human phenotypes and disease. House mice in the wild consist of at least three distinct subspecies and harbor extensive genetic and phenotypic variation both within and between these subspecies.
View Article and Find Full Text PDFHybrid mice shed new light on the interactions between regions of the genome that help drive the evolution of new species by reducing the fertility of hybrid males.
View Article and Find Full Text PDFOne approach to understanding the genetic basis of speciation is to scan the genomes of recently diverged taxa to identify highly differentiated regions. The house mouse, Mus musculus, provides a useful system for the study of speciation. Three subspecies (M.
View Article and Find Full Text PDFEstimates of the proportion of amino acid substitutions that have been fixed by selection (α) vary widely among taxa, ranging from zero in humans to over 50% in Drosophila. This wide range may reflect differences in the efficacy of selection due to differences in the effective population size (N(e)). However, most comparisons have been made among distantly related organisms that differ not only in N(e) but also in many other aspects of their biology.
View Article and Find Full Text PDFComparisons among patterns exhibited by functionally distinct genetic markers have been widely used to infer the impacts of demography and selection in structuring genetic variation in natural populations. However, such multilocus comparisons remain an indirect evaluation of selection at particular candidate loci; ideally, the identification of a candidate gene by comparative genetic methodologies should be complemented by functional analyses and experimental manipulations of genotypes in the laboratory or field. We examined genotype frequency variation among replicated intertidal habitats at two spatial scales in the grazing snail Littorina obtusata.
View Article and Find Full Text PDF