Publications by authors named "Megan Peccarelli"

The nonsense-mediated mRNA decay (NMD) pathway regulates mRNAs that aberrantly terminate translation. This includes aberrant mRNAs and functional natural mRNAs. Natural mRNA degradation by NMD is triggered by mRNA features and environmental cues.

View Article and Find Full Text PDF

The differential regulation of COX17, COX19 and COX23 mRNAs by the nonsense-mediated mRNA decay (NMD) pathway was investigated. The NMD pathway regulates mRNAs that aberrantly terminate translation. This includes mRNAs harboring premature translation termination codons and natural mRNAs.

View Article and Find Full Text PDF

The nonsense-mediated mRNA decay pathway (NMD) is an mRNA degradation pathway that degrades mRNAs that prematurely terminate translation. These mRNAs include mRNAs with premature termination codons as well as many natural mRNAs. In Saccharomyces cerevisiae a number of features have been shown to target natural mRNAs to NMD.

View Article and Find Full Text PDF

mRNA steady state levels vary depending on environmental conditions. Regulation of the steady state accumulation levels of an mRNA ensures that the correct amount of protein is synthesized for the cell's specific growth conditions. One approach for measuring mRNA decay rates is inhibiting transcription and subsequently monitoring the disappearance of the already present mRNA.

View Article and Find Full Text PDF

The nonsense-mediated mRNA decay (NMD) pathway was originally identified as a pathway that degrades mRNAs with premature termination codons; however, NMD is now known to regulate natural mRNAs as well. Natural mRNAs are degraded by NMD due to the presence of specific NMD targeting features. An atypically long 3'-UTR is one of the features that has been shown to induce the rapid degradation of mRNAs by NMD in Saccharomyces cerevisiae and other organisms.

View Article and Find Full Text PDF

The nonsense-mediated mRNA decay (NMD) pathway is a specialized mRNA degradation pathway that degrades select mRNAs. This pathway is conserved in all eukaryotes examined so far, and it triggers the degradation of mRNAs that prematurely terminate translation. Originally identified as a pathway that degrades mRNAs with premature termination codons as a result of errors during transcription, splicing, or damage to the mRNA, NMD is now also recognized as a pathway that degrades some natural mRNAs.

View Article and Find Full Text PDF